2024年成考专升本《高等数学一》每日一练试题06月08日

聚题库
06/08
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202211/1763759ae3c3f5b.png" />()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/1763759aeee6b92.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/1763759af8f1896.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/1763759b0456f04.png' /></li><li>D:0</li></ul><p>答 案:D</p><p>解 析:被积函数x<sup>5</sup>为奇函数,积分区间[1,1]为对称区间,由定积分对称性质可知<img src="https://img2.meite.com/questions/202211/1763759b975cbfc.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202212/03638ae390d4700.png" />()。</p><ul><li>A:0</li><li>B:1</li><li>C:<img src='https://img2.meite.com/questions/202212/03638ae39c54e94.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638ae3a5e5de9.png' /></li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638ae3b60d066.png" />。</p><p>3、<img src="https://img2.meite.com/question/import/591d0b5c9f65cc151933621f3f7d06ae.png" /></p><ul><li>A:2x<sup>2+C</sup></li><li>B:x<sup>2+C</sup></li><li>C:1/2x<sup>2+C</sup></li><li>D:x+C</li></ul><p>答 案:C</p><p class="introTit">主观题</p><p>1、求<img src="https://img2.meite.com/questions/202211/166374aae6ed5e7.png" /></p><p>答 案:解:利用洛必达法则,得<img src="https://img2.meite.com/questions/202211/166374aaf5e35bf.png" /></p><p>2、求微分方程<img src="https://img2.meite.com/questions/202212/03638ac06ec86af.png" />满足初始条件<img src="https://img2.meite.com/questions/202212/03638ac07e02535.png" />的特解。</p><p>答 案:解:将方程改写为<img src="https://img2.meite.com/questions/202212/03638ac08d6874b.png" />,<img src="https://img2.meite.com/questions/202212/03638ac09c022b3.png" />,则<img src="https://img2.meite.com/questions/202212/03638ac0d3cb0a3.png" />故方程通解为<img src="https://img2.meite.com/questions/202212/03638ac103b9bff.png" />将<img src="https://img2.meite.com/questions/202212/03638ac115367e7.png" />代入通解,得<img src="https://img2.meite.com/questions/202212/03638ac1227c548.png" />从而所求满足初始条件<img src="https://img2.meite.com/questions/202212/03638ac131946df.png" />的特解为<img src="https://img2.meite.com/questions/202212/03638ac14122147.png" /></p><p>3、求微分方程<img src="https://img2.meite.com/questions/202212/03638af2ff119ae.png" />的通解.</p><p>答 案:解:微分方程的特征方程为<img src="https://img2.meite.com/questions/202212/03638af30c475d6.png" />,解得<img src="https://img2.meite.com/questions/202212/03638af31b7e1c1.png" />。故齐次方程的通解为<img src="https://img2.meite.com/questions/202212/03638af328bf5d9.png" />。微分方程的特解为<img src="https://img2.meite.com/questions/202212/03638af3330ebfe.png" />,将其代入微分方程得<img src="https://img2.meite.com/questions/202212/03638af340b1228.png" />,则a=-1。故微分方程的通解为<img src="https://img2.meite.com/questions/202212/03638af355d9b6c.png" />。</p><p class="introTit">填空题</p><p>1、如果曲线f(x)=a-<img src="https://img2.meite.com/questions/202211/306386d384a9cfa.png" />有水平渐近线y=1,则a=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306386d392d1d9b.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/306386d3a24b664.png" /></p><p>2、曲线y=x<sup>3</sup>+2x+3的拐点坐标是()。</p><p>答 案:(0,3)</p><p>解 析:y=x<sup>3</sup>+2x+3,y'=3x<sup>2</sup>+2,y''=6x.令y''=0,得x=0.当x=0时,y=3。当x<0时,y''<0;当x>0时,y''>0.因此(0,3)为曲线的拐点。</p><p>3、<img src="https://img2.meite.com/questions/202211/166374977dc9993.png" />=()。</p><p>答 案:ln2</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374978c5ad27.png" /></p><p class="introTit">简答题</p><p>1、计算<img src="https://img2.meite.com/questions/202303/036401a0f450a6c.png" />其中D是由直线y=0.y=x,x=1所围成的闭区域。  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401afdc2876b.png" /></p>
相关题库