2024年成考专升本《高等数学一》每日一练试题06月03日
<p class="introTit">单选题</p><p>1、设y=x+lnx,dy=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/1763759a187aa8e.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/1763759a293d569.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/1763759a38c61cf.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/1763759a44bed03.png' /></li></ul><p>答 案:B</p><p>解 析:y=x+lnx,则<img src="https://img2.meite.com/questions/202211/1763759a59cf79f.png" />。</p><p>2、下列等式成立的是()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/176414254a18e27.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/176414254f2ed59.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/176414255534e2b.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/176414255bd7cb3.png' /></li></ul><p>答 案:C</p><p>解 析:由<img src="https://img2.meite.com/questions/202303/17641425981f184.png" /><img src="https://img2.meite.com/questions/202303/17641425a79717d.png" /><img src="https://img2.meite.com/questions/202303/17641425adbb7c7.png" /></p><p>3、<img src="https://img2.meite.com/questions/202212/0163884527c00f9.png" />()。</p><ul><li>A:-2</li><li>B:-1</li><li>C:1</li><li>D:2</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638845394b0ff.png" />A,积分区域为矩形,面积A为2,<img src="https://img2.meite.com/questions/202212/0163884545e6f08.png" />2。</p><p class="introTit">主观题</p><p>1、求曲线y=x<sup>2</sup>、直线y=2-x与x轴所围成的图形的面积A及该图形绕y轴旋转所得旋转体的体积V<sub>y</sub>。</p><p>答 案:解:所围图形见下图。<img src="https://img2.meite.com/questions/202212/01638817ad26d85.png" /><img src="https://img2.meite.com/questions/202212/01638817cd54176.png" />A可另求如下:由<img src="https://img2.meite.com/questions/202212/01638817dd2d185.png" />故<img src="https://img2.meite.com/questions/202212/01638817ee1852e.png" /><img src="https://img2.meite.com/questions/202212/016388180148236.png" /></p><p>2、设<img src="https://img2.meite.com/questions/202211/176375db1bc430b.png" />,求<img src="https://img2.meite.com/questions/202211/176375db347e4aa.png" /></p><p>答 案:解:由题意得<img src="https://img2.meite.com/questions/202211/176375db4b0058a.png" />故<img src="https://img2.meite.com/questions/202211/176375db5f00621.png" />。</p><p>3、设有一圆形薄片<img src="https://img2.meite.com/questions/202212/016388539282716.png" />,在其上一点M(x,y)的面密度与点M到点(0,0)的距离成正比,求分布在此薄片上的物质的质量。</p><p>答 案:解:设密度为<img src="https://img2.meite.com/questions/202212/01638853a97290f.png" />故质量<img src="https://img2.meite.com/questions/202212/01638853c0a4ea0.png" /><img src="https://img2.meite.com/questions/202212/01638853e14485a.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/176375a30c09bc6.png" />()。</p><p>答 案:arctanx+C</p><p>解 析:由不定积分基本公式可知<img src="https://img2.meite.com/questions/202211/176375a31d1eca0.png" /></p><p>2、设<img src="https://img2.meite.com/questions/202211/306387248fa2011.png" />,则f'(x)=()。</p><p>答 案:2xsinx<sup>2</sup>-sinx</p><p>解 析:<img src="https://img2.meite.com/questions/202211/30638724baf2b96.png" />。</p><p>3、设f'(1)=1,则<img src="https://img2.meite.com/questions/202211/306386b3d3a05ce.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306386b3df01fbb.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/306386b3f815a72.png" />。</p><p class="introTit">简答题</p><p>1、计算<img src="https://img2.meite.com/questions/202405/166645be9260e6a.png" />,其中D是由曲线<img src="https://img2.meite.com/questions/202405/166645be9786e84.png" />,y=x,y=-x所围成的闭区域.
</p><p>答 案:积分区域用极坐标可表示为<img src="https://img2.meite.com/questions/202405/166645be9db576b.png" /> 故<img src="https://img2.meite.com/questions/202405/166645bea4182fa.png" />
</p>