2024年成考专升本《高等数学一》每日一练试题06月02日

聚题库
06/02
<p class="introTit">单选题</p><p>1、若幂级数<img src="https://img2.meite.com/questions/202212/01638858473e0ab.png" />的收敛区间是[1,1),则级数<img src="https://img2.meite.com/questions/202212/0163885856a83ef.png" />的收敛区间是()。</p><ul><li>A:[-1,1]</li><li>B:[-1,1)</li><li>C:(0,2]</li><li>D:[0,2)</li></ul><p>答 案:D</p><p>解 析:因为幂级数<img src="https://img2.meite.com/questions/202212/01638858724f819.png" />的收敛区间是[-1,1),则级数<img src="https://img2.meite.com/questions/202212/01638858853aa94.png" />的收敛区间为<img src="https://img2.meite.com/questions/202212/016388589a3c58d.png" />,即<img src="https://img2.meite.com/questions/202212/01638858ab84078.png" /><2。</p><p>2、函数z=f(x,y)在点P(x,y)处的偏导数<img src="https://img2.meite.com/questions/202212/01638843564cb0c.png" />,<img src="https://img2.meite.com/questions/202212/0163884362105e6.png" />为连续函数,是函数z=f(x,y)在点P(x,y)处可微分的()。</p><ul><li>A:充分条件</li><li>B:必要条件</li><li>C:充分必要条件</li><li>D:既非充分也非必要条件</li></ul><p>答 案:A</p><p>解 析:由多元函数微分的充分条件可知,函数z=f(x,y)在点P(x,y)处的偏导数<img src="https://img2.meite.com/questions/202212/01638843bed25f2.png" />,<img src="https://img2.meite.com/questions/202212/01638843d72088f.png" />为连续函数,是函数z=f(x,y)在点P(x,y)处可微分的充分条件。</p><p>3、<img src="https://img2.meite.com/questions/202211/166374935eb4de2.png" />()。</p><ul><li>A:e<sup>2</sup>+1</li><li>B:e<sup>2</sup></li><li>C:e<sup>2</sup>-1</li><li>D:e<sup>2</sup>-2</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374938c8dcc5.png" />。</p><p class="introTit">主观题</p><p>1、求极限<img src="https://img2.meite.com/questions/202211/2963856a48dc287.png" /></p><p>答 案:解:当<img src="https://img2.meite.com/questions/202211/2963856b270530f.png" />时,<img src="https://img2.meite.com/questions/202211/2963856b3fee003.png" />,则<img src="https://img2.meite.com/questions/202211/2963856b4f30989.png" />。</p><p>2、求函数<img src="https://img2.meite.com/questions/202211/16637481ac9faa4.png" />的极大值与极小值。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/16637481b49cbf3.png" />令f′(x)=0,解得x<sub>1</sub>=-1;x<sub>2</sub>=1又f″(x)=6x,可知f″(-1)=-6<0,f″(1)=6>0<br />故x=-1为f(x)的极大值点,极大值为7<br />x=1为f(x)的极小值点,极小值为3。</p><p>3、计算<img src="https://img2.meite.com/questions/202212/0163880f6fcc230.png" />dx。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/0163880f85e1928.png" /><img src="https://img2.meite.com/questions/202212/0163880f93955c3.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202212/03638afa9f38510.png" />()。</p><p>答 案:1/3</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638afab19e095.png" /><img src="https://img2.meite.com/questions/202212/03638afabf7ab54.png" /></p><p>2、设z=xy,则<img src="https://img2.meite.com/questions/202211/176375d6ffe1d52.png" />()。</p><p>答 案:1</p><p>解 析:z=xy,则<img src="https://img2.meite.com/questions/202211/176375d711120ca.png" />。</p><p>3、微分方程y''=x的通解是()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163886f82df537.png" /></p><p>解 析:等式两边同时积分得<img src="https://img2.meite.com/questions/202212/0163886f95c7a8f.png" />,重复上一步骤得<img src="https://img2.meite.com/questions/202212/0163886fa4e4f0b.png" /></p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202303/1764140b5eb19d9.png" /></p><p>答 案:<img src="https://img2.meite.com/questions/202303/1764140b998c053.png" /></p>
相关题库