2024年成考专升本《高等数学一》每日一练试题06月01日
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202212/03638af57dc3578.png" />()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/03638af58d9bad0.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/03638af597298c7.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/03638af5a083e48.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638af5a9e9bc2.png' /></li></ul><p>答 案:B</p><p>解 析:根据<img src="https://img2.meite.com/questions/202212/03638af5bbb5a1c.png" />,可得<img src="https://img2.meite.com/questions/202212/03638af5ceddb5f.png" />。</p><p>2、若级数<img src="https://img2.meite.com/questions/202212/01638854cfa0e9b.png" />收敛,则<img src="https://img2.meite.com/questions/202212/01638854db021ec.png" />()。</p><ul><li>A:发散</li><li>B:条件收敛</li><li>C:绝对收敛</li><li>D:无法判定敛散性</li></ul><p>答 案:C</p><p>解 析:级数绝对收敛的性质可知,<img src="https://img2.meite.com/questions/202212/01638854ef9f908.png" />收敛,则<img src="https://img2.meite.com/questions/202212/01638855016b01e.png" />收敛,且为绝对收敛。</p><p>3、<img src="https://img2.meite.com/questions/202212/0163884527c00f9.png" />()。</p><ul><li>A:-2</li><li>B:-1</li><li>C:1</li><li>D:2</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638845394b0ff.png" />A,积分区域为矩形,面积A为2,<img src="https://img2.meite.com/questions/202212/0163884545e6f08.png" />2。</p><p class="introTit">主观题</p><p>1、计算二重积分<img src="https://img2.meite.com/questions/202212/03638b011375882.png" />,其中D是由曲线y=1-x<sup>2</sup>与y=x<sup>2</sup>-1所围成.</p><p>答 案:解:积分区域D如图所示<img src="https://img2.meite.com/questions/202212/03638b013842bb7.png" />。<img src="https://img2.meite.com/questions/202212/03638b0156e7367.png" />解得两组解,对应两个交点(-1,0),(1,0)。<img src="https://img2.meite.com/questions/202212/03638b016c67343.png" /></p><p>2、求<img src="https://img2.meite.com/questions/202211/176375a84a8cfed.png" /></p><p>答 案:解:方法一:(洛必达法则)<img src="https://img2.meite.com/questions/202211/176375a85dc2360.png" />方法二:(等价无穷小)<img src="https://img2.meite.com/questions/202211/176375a870ab12a.png" /><img src="https://img2.meite.com/questions/202211/176375a87faccf4.png" /></p><p>3、设<img src="https://img2.meite.com/questions/202211/166374ab053a051.png" />,求y'.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374acf55bc71.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202212/03638afb927e43a.png" />则y'=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638afba443629.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638afbb805595.png" />。</p><p>2、设函数<img src="https://img2.meite.com/questions/202211/176375a19a66ea0.png" />,在x=0处连续,则a=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/176375a1a92c1a0.png" /></p><p>解 析:由于f(x)在点x=0处连续,故<img src="https://img2.meite.com/questions/202211/176375a1c0105fe.png" />存在,且<img src="https://img2.meite.com/questions/202211/176375a1d4ed67f.png" />,<img src="https://img2.meite.com/questions/202211/176375a1ec35ffe.png" /></p><p>3、<img src="https://img2.meite.com/questions/202211/16637457ce1b54a.png" />=()。</p><p>答 案:sin(x+2)+C</p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637457edf1411.png" /></p><p class="introTit">简答题</p><p>1、设函数<img src="https://img2.meite.com/questions/202303/036401a023d2795.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401af4921316.png" /></p>