2024年成考专升本《高等数学一》每日一练试题05月28日
<p class="introTit">单选题</p><p>1、微分方程<img src="https://img2.meite.com/questions/202211/16637454177b20a.png" />的阶数为()。</p><ul><li>A:1</li><li>B:2</li><li>C:3</li><li>D:4</li></ul><p>答 案:A</p><p>解 析:微分方程<img src="https://img2.meite.com/questions/202211/166374541f0f375.png" />所含有未知函数y的导数最高阶数为1,为一阶微分方程。</p><p>2、设z=x<sup>2</sup>y,则<img src="https://img2.meite.com/questions/202211/166374939f758ab.png" />=()。</p><ul><li>A:xy</li><li>B:2xy</li><li>C:x<sup>2</sup></li><li>D:2xy+x<sup>2</sup></li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637493b3d7670.png" />。</p><p>3、下列函数中在点x<sub>0</sub>=0处可导的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/296385cada44e20.png' /></li><li>B:|x|</li><li>C:<img src='https://img2.meite.com/questions/202211/296385cae51aeb5.png' /></li><li>D:|x|<sup>2</sup></li></ul><p>答 案:D</p><p>解 析:AC两项,<img src="https://img2.meite.com/questions/202211/296385cb001f7e7.png" />在x<sub>0</sub>=0处无定义不可导;B项,在x<sub>0</sub>=0处有<img src="https://img2.meite.com/questions/202211/296385cb1ebd39f.png" />所以该函数在x<sub>0</sub>=0处不可导;D项,<img src="https://img2.meite.com/questions/202211/296385cb4603f19.png" />,显然在x<sub>0</sub>=0处可导。</p><p class="introTit">主观题</p><p>1、将<img src="https://img2.meite.com/questions/202212/01638861372e412.png" />展开为x的幂级数。</p><p>答 案:解:因为<img src="https://img2.meite.com/questions/202212/0163886156cd240.png" />,<img src="https://img2.meite.com/questions/202212/016388616850530.png" />,所以<img src="https://img2.meite.com/questions/202212/016388617f85441.png" /></p><p>2、计算<img src="https://img2.meite.com/questions/202212/0163880f6fcc230.png" />dx。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/0163880f85e1928.png" /><img src="https://img2.meite.com/questions/202212/0163880f93955c3.png" /></p><p>3、判定级数<img src="https://img2.meite.com/questions/202212/03638af1a91015d.png" />的敛散性.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638af1ba750d3.png" />含有参数a>0,要分情况讨论:(1)如果0<a<1,则<img src="https://img2.meite.com/questions/202212/03638af1ce30308.png" />,由级数收敛的必要条件可知,原级数发散。(2)如果a>1,令<img src="https://img2.meite.com/questions/202212/03638af1f837489.png" />=<img src="https://img2.meite.com/questions/202212/03638af1fd403f6.png" />;因为<img src="https://img2.meite.com/questions/202212/03638af20aec47c.png" /><1,因而<img src="https://img2.meite.com/questions/202212/03638af2197e35f.png" />是收敛的,比较法:<img src="https://img2.meite.com/questions/202212/03638af22c14c44.png" /><br />所以<img src="https://img2.meite.com/questions/202212/03638af2377e88e.png" />也收敛。<br />(3)如果a=1,则<img src="https://img2.meite.com/questions/202212/03638af24ff2071.png" />所以<img src="https://img2.meite.com/questions/202212/03638af2632cc46.png" />,由级数收敛的必要条件可知,原级数发散。所以<img src="https://img2.meite.com/questions/202212/03638af274be0c7.png" /></p><p class="introTit">填空题</p><p>1、过点(1,0,-1)与平面3x-y-z-2=0平行的平面的方程为()</p><p>答 案:3x-y-z-4=0</p><p>解 析:平面3x-y-z-2=0的法向量为(3,-1,-1),所求平面与其平行,故所求的平面的法向量为(3,-1,-1),由平面的点法式方程得所求平面方程为3(x-1)-(y-0)-(z+1)=0,及3x-y-z-4=0。</p><p>2、微分方程y'+4y=0的通解为()。</p><p>答 案:y=Ce<sup>-4x</sup></p><p>解 析:将微分方程分离变量,得<img src="https://img2.meite.com/questions/202212/0163886de4c0350.png" />,等式两边分别积分,得<img src="https://img2.meite.com/questions/202212/0163886df7364ae.png" /></p><p>3、<img src="https://img2.meite.com/questions/202212/016388043ccb5a3.png" />=()。</p><p>答 案:</p><p>解 析:被积函数x<sup>3</sup>+sinx为奇函数,且积分区域关于原点对称,由定积分的对称性得<img src="https://img2.meite.com/questions/202212/01638804565adcd.png" />=0。</p><p class="introTit">简答题</p><p>1、设f(x)<img src="https://img2.meite.com/questions/202303/1764141f831cbe2.png" />求f(x)的间断点。</p><p>答 案:由题意知,使f(x)不成立的x值,均为f(x)的间断点,故sin(x-3)=0或x-3=0时f(x)无意义,所以方程点为: x-3=<img src="https://img2.meite.com/questions/202303/17641420052b85c.png" /><img src="https://img2.meite.com/questions/202303/176414200b45e3f.png" />
</p>