2024年成考专升本《高等数学一》每日一练试题05月25日

聚题库
05/25
<p class="introTit">单选题</p><p>1、级数<img src="https://img2.meite.com/questions/202212/016388557833724.png" />(a为大于零的常数)()。</p><ul><li>A:绝对收敛</li><li>B:条件收敛</li><li>C:发散</li><li>D:收敛性与a有关</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638855b02a9c3.png" /><img src="https://img2.meite.com/questions/202212/01638855c11e7de.png" />级数,因此为收敛级数,由级数性质可知<img src="https://img2.meite.com/questions/202212/01638855d964fc3.png" />绝对收敛。</p><p>2、设<img src="https://img2.meite.com/questions/202211/3063871137edba5.png" />,其中f(x)为连续函数,a>0且a≠1,则f(x)等于()。</p><ul><li>A:2a<sup>2x</sup></li><li>B:a<sup>2x</sup>㏑a</li><li>C:2xa<sup>2x-1</sup></li><li>D:2a<sup>2x</sup>㏑a</li></ul><p>答 案:D</p><p>解 析:对<img src="https://img2.meite.com/questions/202211/306387116fac86e.png" />两边求导得:f(x)=2a<sup>2x</sup>lna。</p><p>3、函数<img src="https://img2.meite.com/questions/202211/296385cd769aee8.png" />单调减少的区间为()。</p><ul><li>A:(-∞,1]</li><li>B:[1,2]</li><li>C:[2,+∞)</li><li>D:[1,+∞)</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/296385cdb8cba03.png" />的定义域为(-∞,+∞),求导得<img src="https://img2.meite.com/questions/202211/296385cdd67cf19.png" />令<img src="https://img2.meite.com/questions/202211/296385cdea4c3e2.png" />得驻点<img src="https://img2.meite.com/questions/202211/296385cdfc01d17.png" />当x<1时,<img src="https://img2.meite.com/questions/202211/296385ce12effde.png" />f(x)单调增加;当1<x<2时,<img src="https://img2.meite.com/questions/202211/296385ce254f76d.png" />,f(x)单调减少;当x>2时,<img src="https://img2.meite.com/questions/202211/296385ce361539c.png" />f(x)单调增加.故单调递减区间为[1,2]。</p><p class="introTit">主观题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202212/03638abfcd7e3d7.png" />的通解。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638abfdcef73e.png" />的特征方程为<img src="https://img2.meite.com/questions/202212/03638abff01fb1d.png" />,则特征根为<img src="https://img2.meite.com/questions/202212/03638abffe17da5.png" />,故其通解为<img src="https://img2.meite.com/questions/202212/03638ac008bf86f.png" />因为自由项<img src="https://img2.meite.com/questions/202212/03638ac01b1bf1b.png" />不是特征根,故设特殊解为<img src="https://img2.meite.com/questions/202212/03638ac02b593ed.png" />代入原方程,有<img src="https://img2.meite.com/questions/202212/03638ac03e9196e.png" />故<img src="https://img2.meite.com/questions/202212/03638ac04c2d7ae.png" />的通解为<img src="https://img2.meite.com/questions/202212/03638ac05da9731.png" /></p><p>2、试证:当x>0时,有不等式<img src="https://img2.meite.com/questions/202212/03638affc6aa0f3.png" /></p><p>答 案:证:先证x>sinx(x>0)。设f(x)=x-sinx,则f(x)=1-cosx≥0(x>0),所以f(x)为单调递增函数,于是对x>0有f(x)>f(0)=0,即x-sinx>0,亦即x>sinx(x>0)。再证<img src="https://img2.meite.com/questions/202212/03638affee811dd.png" /><br />令<img src="https://img2.meite.com/questions/202212/03638afffc44f70.png" /><br />则<img src="https://img2.meite.com/questions/202212/03638b0009b99c4.png" />,所以g'(x)单调递增,又g'(x)=0,可知g'(x)>g'(0)=0(x>0),那么有g(x)单调递增,又g(0)=0,可知g(x)>g(0)=0(x>0),所以<img src="https://img2.meite.com/questions/202212/03638b0054d6d06.png" />即<img src="https://img2.meite.com/questions/202212/03638b0063d9343.png" /><br />综上可得:当x>0时,<img src="https://img2.meite.com/questions/202212/03638b007c4f31d.png" />。</p><p>3、将f(x)=sin3x展开为x的幂级数,并指出其收敛区间。</p><p>答 案:解:由于<img src="https://img2.meite.com/questions/202212/016388627d9a6c4.png" />可知<img src="https://img2.meite.com/questions/202212/016388628ad87e5.png" /><img src="https://img2.meite.com/questions/202212/016388629c34e26.png" /></p><p class="introTit">填空题</p><p>1、设函数f(x)满足f’(1)=5,则<img src="https://img2.meite.com/questions/202303/0364019ec8db810.png" /></p><p>答 案:10</p><p>解 析:<img src="https://img2.meite.com/questions/202303/036401acbf9d156.png" /><img src="https://img2.meite.com/questions/202303/036401acc7c911f.png" /></p><p>2、设I=<img src="https://img2.meite.com/questions/202303/176414030ee674e.png" />交换积分次序,则有I=()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414032f6347a.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/1764140336b7f20.png" />的积分区域<img src="https://img2.meite.com/questions/202303/176414034e05ef7.png" /><img src="https://img2.meite.com/questions/202303/17641403566791e.png" /><img src="https://img2.meite.com/questions/202303/176414035c360c7.png" /></p><p>3、z=sin(x<sup>2</sup>+y<sup>2</sup>),则dz=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/01638848f95b1b8.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638849090eabb.png" />,所以<img src="https://img2.meite.com/questions/202212/01638849178c76b.png" />。</p><p class="introTit">简答题</p><p>1、求<img src="https://img2.meite.com/questions/202303/036401a0a3e00d2.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401afab6aba9.png" /></p>
相关题库