2024年成考专升本《高等数学一》每日一练试题05月24日
<p class="introTit">单选题</p><p>1、微分方程<img src="https://img2.meite.com/questions/202211/16637493be1a8d7.png" />有特解y=()。</p><ul><li>A:6x</li><li>B:3x</li><li>C:2x</li><li>D:x</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637493cdcc28e.png" />等式两边分别积分<img src="https://img2.meite.com/questions/202211/16637493d5e79a1.png" />,得y=6x+C,因此有特解6x。</p><p>2、设有直线<img src="https://img2.meite.com/questions/202212/0163881cba9fd73.png" />当直线l<sub>1</sub>与l<sub>2</sub>平行时,<img src="https://img2.meite.com/questions/202212/0163881ccd2870a.png" />=()。</p><ul><li>A:1</li><li>B:0</li><li>C:<img src='https://img2.meite.com/questions/202212/0163881cdb9a443.png' /></li><li>D:-l</li></ul><p>答 案:C</p><p>解 析:直线l<sub>1</sub>、l<sub>2</sub>的方向向量分别<img src="https://img2.meite.com/questions/202212/0163881d18b0792.png" />又<img src="https://img2.meite.com/questions/202212/0163881d2b66c21.png" />,则<img src="https://img2.meite.com/questions/202212/0163881d3d4adce.png" />,从而λ=<img src="https://img2.meite.com/questions/202212/0163881d4f31267.png" />。</p><p>3、下列四项中,正确的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/3063871d2161e9c.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/3063871d2cdb389.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/3063871d39050ff.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/3063871d44a6079.png' /></li></ul><p>答 案:C</p><p>解 析:A项,<img src="https://img2.meite.com/questions/202211/3063871d503b11a.png" />在(-1,1)不连续;B项,<img src="https://img2.meite.com/questions/202211/3063871de19d022.png" />不存在;C项,<img src="https://img2.meite.com/questions/202211/3063871decd1627.png" />在(-1,1)为奇函数,所以<img src="https://img2.meite.com/questions/202211/3063871e0b4f3d9.png" />;D项,<img src="https://img2.meite.com/questions/202211/3063871e15c6603.png" />也不存在。</p><p class="introTit">主观题</p><p>1、<img src="https://img2.meite.com/question/import/50494b9e025a419e52b329d35f346451.png" /></p><p>答 案:<img src="https://img2.meite.com/question/import/d7fd6a41cf155f0af5baed85955216c3.png" /></p><p>2、设<img src="https://img2.meite.com/questions/202211/166374afc293c27.png" />,求<img src="https://img2.meite.com/questions/202211/166374afcf46756.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374afe188e20.png" /></p><p>3、求函数<img src="https://img2.meite.com/questions/202212/03638aefd8a9e48.png" />的凹凸性区间及拐点.</p><p>答 案:解:函数的定义域为<img src="https://img2.meite.com/questions/202212/03638aefeeac301.png" />。<img src="https://img2.meite.com/questions/202212/03638af0026d7fa.png" />.令y″=0,得x=6;不可导点为x=-3。故拐点为(6,<img src="https://img2.meite.com/questions/202212/03638af01a2501a.png" />),(-∞,-3)和(-3,6)为凸区间,(6,+∞)为凹区间。</p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/186376e05e7dfa5.png" />=()。</p><p>答 案:e<sup>-1</sup></p><p>解 析:<img src="https://img2.meite.com/questions/202211/186376e07bb2733.png" /></p><p>2、微分方程y'-2y=3的通解为=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163886f26ac016.png" /></p><p>解 析:分离变量<img src="https://img2.meite.com/questions/202212/0163886f3ac7856.png" />两边分别积分<img src="https://img2.meite.com/questions/202212/0163886f5084bb4.png" /><img src="https://img2.meite.com/questions/202212/0163886f5ca216e.png" />方程的通解为<img src="https://img2.meite.com/questions/202212/0163886f6f7619a.png" /></p><p>3、过点(0,1,1)且与直线<img src="https://img2.meite.com/questions/202405/166645bdf86c2fa.png" />垂直的平面方程为()
</p><p>答 案:x+2y+z-3=0</p><p>解 析:由题意,平面法向量为n=(1,2,1),又过点(0,1,1),故方程为x+2(y-1)+(z-1)=0,即x+2y+z-3=0.</p><p class="introTit">简答题</p><p>1、求函数f(x)=<img src="https://img2.meite.com/questions/202303/036401a047d0835.png" />的单调区间。
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401af525c8e7.png" /> <img src="https://img2.meite.com/questions/202303/036401af6400cd0.png" /><img src="https://img2.meite.com/questions/202303/036401af706ad1e.png" />
<img src="https://img2.meite.com/questions/202303/036401af8094320.png" /><img src="https://img2.meite.com/questions/202303/036401af8b285df.png" /></p>