2024年成考专升本《高等数学一》每日一练试题05月19日
<p class="introTit">单选题</p><p>1、设<img src="https://img2.meite.com/questions/202212/0163885621c6502.png" />收敛,sn=<img src="https://img2.meite.com/questions/202212/016388562d31175.png" />,则<img src="https://img2.meite.com/questions/202212/0163885635d6347.png" />sn()。</p><ul><li>A:必定存在且值为0</li><li>B:必定存在且值可能为0</li><li>C:必定存在且值一定不为0</li><li>D:可能不存在</li></ul><p>答 案:B</p><p>解 析:由级数收敛的定义,级数的前n项和存在,则级数必收敛。</p><p>2、<img src="https://img2.meite.com/questions/202211/176375ae3458f62.png" />=()。</p><ul><li>A:3</li><li>B:2</li><li>C:1</li><li>D:0</li></ul><p>答 案:C</p><p>解 析:x<sup>2</sup>+1在(-∞,∞)都是连续的,函数在连续区间的极限,可直接代入求得,<img src="https://img2.meite.com/questions/202211/176375ae7100201.png" />=0+1=1。</p><p>3、若函数F(x)和G(x)都是函数f(x)的原函数,则下列四个式子,正确的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/3063871e243b9c8.png' /></li><li>B:F(x)+G(x)=C</li><li>C:F(x)=G(x)+1</li><li>D:F(x)-G(x)=C</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202211/3063871e3d85511.png" />。</p><p class="introTit">主观题</p><p>1、求函数<img src="https://img2.meite.com/questions/202212/03638aefd8a9e48.png" />的凹凸性区间及拐点.</p><p>答 案:解:函数的定义域为<img src="https://img2.meite.com/questions/202212/03638aefeeac301.png" />。<img src="https://img2.meite.com/questions/202212/03638af0026d7fa.png" />.令y″=0,得x=6;不可导点为x=-3。故拐点为(6,<img src="https://img2.meite.com/questions/202212/03638af01a2501a.png" />),(-∞,-3)和(-3,6)为凸区间,(6,+∞)为凹区间。</p><p>2、设D是由直线y=x与曲线y=x<sup>3</sup>在第一象限所围成的图形.(1)求D的面积S;<br />(2)求D绕x轴旋转一周所得旋转体的体积V。</p><p>答 案:解:由<img src="https://img2.meite.com/questions/202211/176375ac457995e.png" />,知两曲线的交点为(0,0),(1,1)和(-1,-1),则(1)<img src="https://img2.meite.com/questions/202211/176375ac638d915.png" /><img src="https://img2.meite.com/questions/202211/176375ac7126036.png" /><img src="https://img2.meite.com/questions/202211/176375ac7f4fd17.png" />(2)<img src="https://img2.meite.com/questions/202211/176375ac93635b5.png" /><img src="https://img2.meite.com/questions/202211/176375aca0d2fc7.png" /><img src="https://img2.meite.com/questions/202211/176375acb04c7c5.png" /></p><p>3、求曲线y=x<sup>2</sup>在点(a,a<sup>2</sup>)(a<1)的一条切线,使由该切线与x=0、x=1和y=x<sup>2</sup>所围图形的面积最小。</p><p>答 案:解:设所求切线的切点为(a,b),见下图,<img src="https://img2.meite.com/questions/202212/01638814257361c.png" />则b=a<sup>2</sup>,<img src="https://img2.meite.com/questions/202212/016388143d3fc16.png" />,切线方程为y-b=2a(x-a),y=2ax-2a<sup>2</sup>+b=2ax-a<sup>2</sup>。设对应图形面积为A,则<img src="https://img2.meite.com/questions/202212/01638814689e85a.png" /><br />令<img src="https://img2.meite.com/questions/202212/0163881476e033e.png" />,则<img src="https://img2.meite.com/questions/202212/01638814851e37c.png" />,令<img src="https://img2.meite.com/questions/202212/0163881492513cb.png" />。当a<<img src="https://img2.meite.com/questions/202212/01638814a227100.png" />时,f'(a)<0;当a><img src="https://img2.meite.com/questions/202212/01638814a227100.png" />时,f'(a)>0,故<img src="https://img2.meite.com/questions/202212/0163881536b8640.png" />为f(a)的最小值点,切线方程为:y=x-<img src="https://img2.meite.com/questions/202212/01638815675a0c3.png" />。</p><p class="introTit">填空题</p><p>1、设<img src="https://img2.meite.com/questions/202211/176375a235be9a3.png" />,则<img src="https://img2.meite.com/questions/202211/176375a2449fce9.png" />()。</p><p>答 案:2e<sup>2</sup></p><p>解 析:<img src="https://img2.meite.com/questions/202211/176375a2610bc67.png" />,则<img src="https://img2.meite.com/questions/202211/176375a26dd4a8b.png" /></p><p>2、极限<img src="https://img2.meite.com/questions/202211/29638565e60a121.png" />=()。</p><p>答 案:2</p><p>解 析:<img src="https://img2.meite.com/questions/202211/2963856610bfe18.png" />。</p><p>3、曲线<img src="https://img2.meite.com/questions/202212/03638afcbb3d8f8.png" />在点(1,2)处的切线方程为()。</p><p>答 案:y-2=3(x-1)</p><p>解 析:y=2x<sup>2</sup>-x+1点(1,2)在曲线上,且<img src="https://img2.meite.com/questions/202212/03638afcd7eeacf.png" />,因此曲线过点(1,2)的切线方程为y-2=3(x-1),或写为y=3x-1。</p><p class="introTit">简答题</p><p>1、已知函数f(x)连续,且满足<img src="https://img2.meite.com/questions/202405/166645beaa03b83.png" />,求f(x).
</p><p>答 案:由于<img src="https://img2.meite.com/questions/202405/166645beaeab9d4.png" />两边同时求导得<img src="https://img2.meite.com/questions/202405/166645beb77c5fe.png" />所以<img src="https://img2.meite.com/questions/202405/166645bebc9ba6e.png" /></p>