2024年成考高起点《数学(理)》每日一练试题05月14日
<p class="introTit">单选题</p><p>1、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,则△ABC是()</p><ul><li>A:以A为直角的三角形</li><li>B:b=c的等腰三角形</li><li>C:等边三角形</li><li>D:钝角三角形</li></ul><p>答 案:B</p><p>解 析:判断三角形的形状,条件是用一个对数等式给出先将对数式利用对数的运算法则整理。 ∵lgsinA-lgsinB-lgcos=lg2,由对数运算法则可得,左<img src="https://img2.meite.com/questions/202303/286422954acc4dc.png" />
两个对数底数相等则真数相等:<img src="https://img2.meite.com/questions/202303/2864229567bb0e0.png" />即2sinBcosC=sinA
在△ABC中,∵A+B+C=180°,∴A=180°-(B+C),
<img src="https://img2.meite.com/questions/202303/28642295c273960.png" /><img src="https://img2.meite.com/questions/202303/28642295c819886.png" /><img src="https://img2.meite.com/questions/202303/28642295d337926.png" /><img src="https://img2.meite.com/questions/202303/28642295d958b6e.png" /><img src="https://img2.meite.com/questions/202303/28642295df5ccdf.png" />
故为等腰三角形</p><p>2、下列函数中,为增函数的是()。</p><ul><li>A:y=x<sup>3</sup></li><li>B:y=x<sup>2</sup></li><li>C:y=-x<sup>2</sup></li><li>D:y=-x<sup>3</sup></li></ul><p>答 案:A</p><p>解 析:本题主要考查的知识点为函数的单调性.
对于y=x<sup>3</sup>,y’=3x<sup>2</sup>≥0,故y=x<sup>3</sup>为增函数</p><p>3、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/2864228b79d4590.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/2864228b7f2183c.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/2864228b82e5ed4.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/2864228b86922f8.png' /></li></ul><p>答 案:B</p><p>解 析:求cos<a,b>可直接用公式cos<a,b><img src="https://img2.meite.com/questions/202303/2864228c5310ae5.png" /> a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,<img src="https://img2.meite.com/questions/202303/2864228c9dda4eb.png" />
</p><p>4、已知α∩β=a,b⊥β,b在α内的射影是b’,那么b'和α的关系是()</p><ul><li>A:b'//α</li><li>B:b'⊥α</li><li>C:b'与α是异面直线</li><li>D:b'与α相交成锐角</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202303/28642296837771f.png" /> ∴由三垂线定理的逆定理知,b在α内的射影b'⊥α,故选B
</p><p class="introTit">主观题</p><p>1、已知抛物线C:y<sup>2</sup>=2px(p>0)的焦点到准线的距离为1。
(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB</p><p>答 案:(I)由题意,该抛物线的焦点到准线的距离为<img src="https://img2.meite.com/questions/202404/1966222edee972e.png" />
所以抛物线C的方程为<img src="https://img2.meite.com/questions/202404/1966222ee6c66f9.png" />
(Ⅱ)因A(l,m)(m>0)为C上一点,故有m<sup>2</sup>=2,
可得<img src="https://img2.meite.com/questions/202404/1966222ef5c5007.png" />因此A点坐标为<img src="https://img2.meite.com/questions/202404/1966222efb949fc.png" />
设B点坐标为<img src="https://img2.meite.com/questions/202404/1966222f0a5cbbb.png" />则<img src="https://img2.meite.com/questions/202404/1966222f11e9340.png" />
因为<img src="https://img2.meite.com/questions/202404/1966222f17c1b05.png" />则有<img src="https://img2.meite.com/questions/202404/1966222f1dce70a.png" />
即<img src="https://img2.meite.com/questions/202404/1966222f27533ea.png" />解得x0=4
所以B点的坐标为<img src="https://img2.meite.com/questions/202404/1966222f308351e.png" />
</p><p>2、在正四棱柱ABCD-A'B'C'D'中,<img src="https://img2.meite.com/questions/202303/2864229a3bc3098.png" />
(Ⅰ)写出向量<img src="https://img2.meite.com/questions/202303/2864229a57ba174.png" />和<img src="https://img2.meite.com/questions/202303/2864229a5e46ac8.png" />关于基底{a,b,c}的分解式;
(Ⅱ)求证:<img src="https://img2.meite.com/questions/202303/2864229a76ba56d.png" />
(Ⅲ)求证:<img src="https://img2.meite.com/questions/202303/2864229a7fdd541.png" />
</p><p>答 案:(Ⅰ)由题意知(如图所示) <img src="https://img2.meite.com/questions/202303/2864229af6b1567.png" />
<img src="https://img2.meite.com/questions/202303/2864229afe90f50.png" />
<img src="https://img2.meite.com/questions/202303/2864229b08314c5.png" />
</p><p>3、某工厂每月生产x台游戏机的收入为R(x)=<img src="https://img2.meite.com/questions/202303/28642259676bd4d.png" />+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
</p><p>答 案:利润 =收入-成本, L(x)=R(x)-C(x)=<img src="https://img2.meite.com/questions/202303/28642259c06a284.png" />+130x-206-(50x+100)=<img src="https://img2.meite.com/questions/202303/28642259e2077b7.png" />+80x-306
法一:用二次函数<img src="https://img2.meite.com/questions/202303/28642259fb36916.png" />当a<0时有最大值
<img src="https://img2.meite.com/questions/202303/2864225a14ed5aa.png" />是开口向下的抛物线,有最大值
<img src="https://img2.meite.com/questions/202303/2864225a2c75330.png" />
法二:用导数来求解
<img src="https://img2.meite.com/questions/202303/2864225a43988b8.png" />
因为x=90是函数在定义域内唯一驻点
所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
</p><p>4、建筑一个容积为8000<img src="https://img2.meite.com/questions/202303/2864224b406cbf6.png" />,深为6m的长方体蓄水池,池壁每<img src="https://img2.meite.com/questions/202303/2864224b5cac16d.png" />的造价为15元,池底每<img src="https://img2.meite.com/questions/202303/2864224b60ac28e.png" />的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/2864224be4311f4.png" /><img src="https://img2.meite.com/questions/202303/2864224bee67713.png" /></p><p class="introTit">填空题</p><p>1、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。</p><p>答 案:<img src="https://img2.meite.com/questions/202404/20662380f056b37.png" /></p><p>解 析:本题主要考查的知识点为圆的切线.
设切点(x0,y0)则有<img src="https://img2.meite.com/questions/202404/20662380f985f55.png" />
即<img src="https://img2.meite.com/questions/202404/20662381033a418.png" /><img src="https://img2.meite.com/questions/202404/206623810c425f9.png" />所以<img src="https://img2.meite.com/questions/202404/2066238119981c7.png" />故切点横坐标为<img src="https://img2.meite.com/questions/202404/206623812263a88.png" />
</p><p>2、lg(tan43°tan45°tan47°)=()
</p><p>答 案:0</p><p>解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0</p>