2024年成考高起点《数学(文史)》每日一练试题05月13日
<p class="introTit">单选题</p><p>1、b=0是直线y=kx+b过原点的()</p><ul><li>A:充分但不必要条件</li><li>B:必要但不充分条件</li><li>C:充要条件</li><li>D:既不充分也不必要条件</li></ul><p>答 案:C</p><p>解 析:b=0<img src="https://img2.meite.com/questions/202303/2964239ee0f0f75.png" />直线y=kx+b过原点</p><p>2、已知向量i,j为互相垂直的单位向量,向量a=2i+mj,若|a|=2,则m=()</p><ul><li>A:-2</li><li>B:-1</li><li>C:0</li><li>D:1</li></ul><p>答 案:C</p><p>解 析:由题可知a=(2,m),因此<img src="https://img2.meite.com/questions/202303/1464102be29a7c0.png" />,故m=0.</p><p>3、函数<img src="https://img2.meite.com/questions/202303/14641025ba25660.png" />的定义域是()</p><ul><li>A:{x|-3≤x≤-1}</li><li>B:{x|x≤-3或x≥-1}</li><li>C:{x|1≤x≤3}</li><li>D:{x|x≤1或x≥3}</li></ul><p>答 案:D</p><p>解 析:由题可知x<sup>2</sup>-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.</p><p>4、若函数f(x)=1+<img src="https://img2.meite.com/questions/202303/296423a8d0db03d.png" />在(0,+∞)上是减函数,则()</p><ul><li>A:a>1</li><li>B:a>2</li><li>C:1<a<2</li><li>D:0<a<1</li></ul><p>答 案:D</p><p>解 析:由已知条件函数f(x)=1+<img src="https://img2.meite.com/questions/202303/296423a8d0db03d.png" />在(0,+∞)上是减函数,及对数函数<img src="https://img2.meite.com/questions/202303/296423a9706abcb.png" />的性质可得底数0<a<1</p><p class="introTit">主观题</p><p>1、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积</p><p>答 案:<img src="https://img2.meite.com/questions/202303/296423a37bd555e.png" /></p><p>2、已知等差数列<img src="https://img2.meite.com/questions/202303/296423eaf9717d6.png" />前n项和<img src="https://img2.meite.com/questions/202303/296423eb032d219.png" />
(Ⅰ)求通项<img src="https://img2.meite.com/questions/202303/296423eb1a4ebf5.png" />的表达式
(Ⅱ)求<img src="https://img2.meite.com/questions/202303/296423eb26c2214.png" />的值
</p><p>答 案:(Ⅰ)当n=1时,由<img src="https://img2.meite.com/questions/202303/296423eb432a645.png" />得<img src="https://img2.meite.com/questions/202303/296423eb5068b03.png" /> <img src="https://img2.meite.com/questions/202303/296423eb59a45cd.png" />
<img src="https://img2.meite.com/questions/202303/296423eb6100c03.png" />
也满足上式,故<img src="https://img2.meite.com/questions/202303/296423eb755b7df.png" />=1-4n(n≥1)
(Ⅱ)由于数列<img src="https://img2.meite.com/questions/202303/296423eb93e2df0.png" />是首项为<img src="https://img2.meite.com/questions/202303/296423eba5a3367.png" />公差为d=-4的等差数列,所以<img src="https://img2.meite.com/questions/202303/296423ebc29c045.png" />是首项为<img src="https://img2.meite.com/questions/202303/296423ebe5ba947.png" />公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
<img src="https://img2.meite.com/questions/202303/296423ec1ac9811.png" /><img src="https://img2.meite.com/questions/202303/296423ec20a013e.png" />
</p><p>3、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/296423b0ae0659d.png" /></p><p>4、设函数f(x)<img src="https://img2.meite.com/questions/202303/296423a66bbdb95.png" />且f'(-1)=-36
(Ⅰ)求m
(Ⅱ)求f(x)的单调区间</p><p>答 案:(Ⅰ)由已知得f'=<img src="https://img2.meite.com/questions/202303/296423a74f41b7f.png" /> 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=<img src="https://img2.meite.com/questions/202303/296423a792d1aff.png" />
令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/296423a7b14cf3f.png" />
当x<-3时,f'(x)>0;
当-3<x<2时,f'(x)<0;
当x>2时,f'(x)>0;
故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)
</p><p class="introTit">填空题</p><p>1、函数y=-x²+ax图像的对称轴为x=2,则a=______。</p><p>答 案:4
</p><p>解 析:本题主要考查的知识点为二次函数的性质。 由题意,该函数图像的对称轴为<img src="https://img2.meite.com/questions/202404/20662381471af77.png" />得a=4。</p><p>2、函数<img src="https://img2.meite.com/questions/202303/296423b01fb70b9.png" />的图像与坐轴的交点共有()个
</p><p>答 案:2</p><p>解 析:当x=0,<img src="https://img2.meite.com/questions/202303/296423b06fa2850.png" />故函数与y轴交于(0,-1)点;令y=0,则有<img src="https://img2.meite.com/questions/202303/296423b0803e06f.png" />故函数与工轴交于(1,0)点,因此函数<img src="https://img2.meite.com/questions/202303/296423b08e0e38c.png" />与坐标轴的交点共有2个</p>