2024年成考专升本《高等数学一》每日一练试题05月13日

聚题库
05/13
<p class="introTit">单选题</p><p>1、设f(x)=<img src="https://img2.meite.com/questions/202211/29638564a7b9a5d.png" />在<img src="https://img2.meite.com/questions/202211/29638564b6ea729.png" />上连续,且<img src="https://img2.meite.com/questions/202211/29638564ca6d938.png" />,则常数a,b满足()。</p><ul><li>A:a<0,b≤0</li><li>B:a>0,b>0</li><li>C:a<0,b<0</li><li>D:a≥0,b<0</li></ul><p>答 案:D</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/29638564e44f0ae.png" />在<img src="https://img2.meite.com/questions/202211/29638564fd5e758.png" />上连续,所以<img src="https://img2.meite.com/questions/202211/296385650bc10f1.png" />因<img src="https://img2.meite.com/questions/202211/296385652266523.png" />则a≥0,又因为<img src="https://img2.meite.com/questions/202211/296385653c413a3.png" />所以<img src="https://img2.meite.com/questions/202211/296385654a65f73.png" />时,必有<img src="https://img2.meite.com/questions/202211/296385655769208.png" />因此应有b<0。</p><p>2、级数<img src="https://img2.meite.com/questions/202303/0364019dcba4672.png" />的收敛半径为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/0364019dee2b35c.png' /></li><li>B:1</li><li>C:<img src='https://img2.meite.com/questions/202303/0364019df7861a9.png' /></li><li>D:2</li></ul><p>答 案:B</p><p>解 析:由题可知<img src="https://img2.meite.com/questions/202303/036401ac6ceeef1.png" />因此级数的收敛半径为<img src="https://img2.meite.com/questions/202303/036401ac8805bbb.png" /></p><p>3、设函数<img src="https://img2.meite.com/questions/202212/03638ae5dc2fec1.png" />,则f(x)的导数f'(x)=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/03638ae60b3d035.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/03638ae61c595c3.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/03638ae627263a9.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638ae632bc237.png' /></li></ul><p>答 案:C</p><p>解 析:由可变限积分求导公式<img src="https://img2.meite.com/questions/202212/03638ae645024ba.png" />可知<img src="https://img2.meite.com/questions/202212/03638ae65923189.png" /></p><p class="introTit">主观题</p><p>1、将<img src="https://img2.meite.com/questions/202212/01638861372e412.png" />展开为x的幂级数。</p><p>答 案:解:因为<img src="https://img2.meite.com/questions/202212/0163886156cd240.png" />,<img src="https://img2.meite.com/questions/202212/016388616850530.png" />,所以<img src="https://img2.meite.com/questions/202212/016388617f85441.png" /></p><p>2、计算<img src="https://img2.meite.com/questions/202212/03638af03054207.png" />.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638af04212449.png" />从而有<img src="https://img2.meite.com/questions/202212/03638af04f52136.png" />,所以<img src="https://img2.meite.com/questions/202212/03638af05e7d49e.png" /></p><p>3、设函数f(x)由<img src="https://img2.meite.com/questions/202211/176375a9a462105.png" />所确定,求<img src="https://img2.meite.com/questions/202211/176375a9b68f239.png" /></p><p>答 案:解:方法一:方程两边同时对x求导,得<img src="https://img2.meite.com/questions/202211/176375a9cd89294.png" />即<img src="https://img2.meite.com/questions/202211/176375a9de829b7.png" />故<img src="https://img2.meite.com/questions/202211/176375a9ec6e2cb.png" /><br />方法二:设<img src="https://img2.meite.com/questions/202211/176375a9fdad664.png" />,<br />则<img src="https://img2.meite.com/questions/202211/176375aa1004c84.png" /><img src="https://img2.meite.com/questions/202211/176375aa1f17e53.png" /></p><p class="introTit">填空题</p><p>1、幂级数<img src="https://img2.meite.com/questions/202211/16637458e6bd9e4.png" />的收敛半径R=()。</p><p>答 案:1</p><p>解 析:对于级数<img src="https://img2.meite.com/questions/202211/16637458f013377.png" />,<img src="https://img2.meite.com/questions/202211/16637458f607186.png" />,<img src="https://img2.meite.com/questions/202211/16637458fb797e9.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202211/3063872295a7417.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306387229feed93.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/30638722b02d14e.png" />。</p><p>3、微分方程<img src="https://img2.meite.com/questions/202303/17641404d969882.png" />的通解为()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/17641404f46d77d.png" /></p><p>解 析:微分方程<img src="https://img2.meite.com/questions/202303/17641404ffe684d.png" />的特征方程为<img src="https://img2.meite.com/questions/202303/176414051194161.png" />特征根为<img src="https://img2.meite.com/questions/202303/176414052db0eda.png" />所以微分方程的通解为<img src="https://img2.meite.com/questions/202303/1764140544a698a.png" /></p><p class="introTit">简答题</p><p>1、设f(x)=<img src="https://img2.meite.com/questions/202303/1764140cba28156.png" />在x=0连续,试确定A,B.</p><p>答 案:<img src="https://img2.meite.com/questions/202303/1764140ce7d0fb9.png" /> <img src="https://img2.meite.com/questions/202303/1764140cf387f0c.png" /> 欲使f(x)在x=0处连续,应有2A=4=B+1,所以A=2,B=3.  </p>
相关题库