当前位置:首页 > 考试
>英语
>精选习题
>2024年成考专升本《高等数学一》每日一练试题05月11日
2024年成考专升本《高等数学一》每日一练试题05月11日
<p class="introTit">单选题</p><p>1、设f(x)=<img src="https://img2.meite.com/questions/202211/29638564a7b9a5d.png" />在<img src="https://img2.meite.com/questions/202211/29638564b6ea729.png" />上连续,且<img src="https://img2.meite.com/questions/202211/29638564ca6d938.png" />,则常数a,b满足()。</p><ul><li>A:a<0,b≤0</li><li>B:a>0,b>0</li><li>C:a<0,b<0</li><li>D:a≥0,b<0</li></ul><p>答 案:D</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/29638564e44f0ae.png" />在<img src="https://img2.meite.com/questions/202211/29638564fd5e758.png" />上连续,所以<img src="https://img2.meite.com/questions/202211/296385650bc10f1.png" />因<img src="https://img2.meite.com/questions/202211/296385652266523.png" />则a≥0,又因为<img src="https://img2.meite.com/questions/202211/296385653c413a3.png" />所以<img src="https://img2.meite.com/questions/202211/296385654a65f73.png" />时,必有<img src="https://img2.meite.com/questions/202211/296385655769208.png" />因此应有b<0。</p><p>2、级数<img src="https://img2.meite.com/questions/202212/03638ae6efb3f7a.png" />(k为非零常数)是()的。</p><ul><li>A:发散</li><li>B:条件收敛</li><li>C:绝对收敛</li><li>D:敛散性与k值有关</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638ae701b8df4.png" />又<img src="https://img2.meite.com/questions/202212/03638ae71a746aa.png" />绝对收敛,所以级数<img src="https://img2.meite.com/questions/202212/03638ae7367fb3f.png" />绝对收敛。</p><p>3、<img src="https://img2.meite.com/questions/202303/0364019b856b668.png" />
</p><ul><li>A:6sin3x+C</li><li>B:<img src='https://img2.meite.com/questions/202303/0364019bae98f7e.png' />sin3x+C</li><li>C:<img src='https://img2.meite.com/questions/202303/0364019bc66fe71.png' />sin3x+C</li><li>D:<img src='https://img2.meite.com/questions/202303/0364019bd2f203b.png' />sin3x+C</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202303/036401ab74287cf.png" /></p><p class="introTit">主观题</p><p>1、设曲线x=√y、y=2及x=0所围成的平面图形为D.(1)求平面图形D的面积S。<br />(2)求平面图形D绕y轴旋转一周所生成旋转体的体积Vy。</p><p>答 案:解:D的图形见右图阴影部分。<img src="https://img2.meite.com/questions/202211/186376ee948d92a.png" />(1)由<img src="https://img2.meite.com/questions/202211/186376eeac047bd.png" />解得<img src="https://img2.meite.com/questions/202211/186376eec7a8197.png" />于是<img src="https://img2.meite.com/questions/202211/186376eeea6d7fd.png" /><br />(2)<img src="https://img2.meite.com/questions/202211/186376eefb038fe.png" /></p><p>2、求由曲线y=x2(x≥0),直线y=1及y轴围成的平面图形的面积.<img src="https://img2.meite.com/questions/202211/16637483c8c4c2b.png" /></p><p>答 案:解:y=x<sup>2</sup>(x≥0),y=1及y轴围成的平面图形D如图所示.其面积为<img src="https://img2.meite.com/questions/202211/16637483e6158df.png" /></p><p>3、求过点M<sub>0</sub>(0,2,4),且与两个平面π1,π2都平行的直线方程,其中<img src="https://img2.meite.com/questions/202212/03638af2a68be37.png" /></p><p>答 案:解:如果直线l平行于π1,则平面π1的法线向量n1必定垂直于直线l的方向向量s.同理,直线l平行于π2,则平面π2的法线向量n2必定满足n2⊥s.由向量积的定义可知,取<img src="https://img2.meite.com/questions/202212/03638af2cfcec2f.png" />由于直线l过点M<sub>0</sub>(0,2,4),由直线的标准方程可知<img src="https://img2.meite.com/questions/202212/03638af2eb2ecba.png" />为所求直线方程。</p><p class="introTit">填空题</p><p>1、设<img src="https://img2.meite.com/questions/202211/306386b23bb2946.png" />则y''=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306386b24d5ce88.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/306386b2615b5e4.png" /><img src="https://img2.meite.com/questions/202211/306386b367aad23.png" /></p><p>2、曲线<img src="https://img2.meite.com/questions/202211/306386d35f0a537.png" />的水平渐近线方程是()。</p><p>答 案:y=1</p><p>解 析:<img src="https://img2.meite.com/questions/202211/306386d372a19cc.png" />故水平渐近线方程是y=1。</p><p>3、设区域<img src="https://img2.meite.com/questions/202212/03638aeca787e1a.png" />,则<img src="https://img2.meite.com/questions/202212/03638aecb39b781.png" />()</p><p>答 案:3π</p><p>解 析:积分区域D为半径为1的圆域,其面积为π,因此<img src="https://img2.meite.com/questions/202212/03638aecd72d70a.png" />。</p><p class="introTit">简答题</p><p>1、给定曲线<img src="https://img2.meite.com/questions/202303/1764140be29ac3d.png" />与直线y=px-q(其中p>0),求p与q为关系时,直线y=px-q<img src="https://img2.meite.com/questions/202303/1764140be29ac3d.png" />的切线。</p><p>答 案:由题意知,再切点处有<img src="https://img2.meite.com/questions/202303/1764140c40e9e08.png" />两边对x求导得<img src="https://img2.meite.com/questions/202303/1764140c4f7bf80.png" /><img src="https://img2.meite.com/questions/202303/1764140c558ef84.png" /></p>