2024年成考专升本《高等数学一》每日一练试题05月10日

聚题库
05/10
<p class="introTit">单选题</p><p>1、设y=x<sup>-2</sup>+3,则y'|<sub>x=1</sub>=()。</p><ul><li>A:3</li><li>B:-3</li><li>C:2</li><li>D:-2</li></ul><p>答 案:D</p><p>解 析:y'=(x<sup>-2</sup>+3)'=(x<sup>-2</sup>)'+3'=-2x<sup>-3</sup>=-2。</p><p>2、如果级数<img src="https://img2.meite.com/questions/202212/016388565aa2005.png" />收敛,那么以下级数收敛的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/01638856693a12a.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/01638856729a2d8.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/016388567c54e3e.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/0163885686f3f8b.png' /></li></ul><p>答 案:A</p><p>解 析:A项。级数<img src="https://img2.meite.com/questions/202212/016388569477790.png" />收敛,则<img src="https://img2.meite.com/questions/202212/01638856a1d6cfc.png" />收敛;由极限收敛的必要条件可知,<img src="https://img2.meite.com/questions/202212/01638856b353526.png" />=0,则B项,<img src="https://img2.meite.com/questions/202212/01638856c5ef172.png" />=1;C项,<img src="https://img2.meite.com/questions/202212/01638856d39abc7.png" />;D项,<img src="https://img2.meite.com/questions/202212/01638856e95c74d.png" />。</p><p>3、直线<img src="https://img2.meite.com/questions/202212/03638af84229707.png" />与平面4x-2y-3z-3=0的位置关系是()。</p><ul><li>A:直线垂直平面</li><li>B:直线平行平面但不在平面内</li><li>C:直线与平面斜交</li><li>D:直线在平面内</li></ul><p>答 案:C</p><p>解 析:直线的方向向量s=(2,7,-3),且此直线过点(-3,-4,0),已知平面的法向量n=(4,-2,-3),故<img src="https://img2.meite.com/questions/202212/03638af865af168.png" />,又因点(-3,-4,0)不在已知平面内,所以已知直线相交于已知平面。</p><p class="introTit">主观题</p><p>1、求<img src="https://img2.meite.com/questions/202211/176375a84a8cfed.png" /></p><p>答 案:解:方法一:(洛必达法则)<img src="https://img2.meite.com/questions/202211/176375a85dc2360.png" />方法二:(等价无穷小)<img src="https://img2.meite.com/questions/202211/176375a870ab12a.png" /><img src="https://img2.meite.com/questions/202211/176375a87faccf4.png" /></p><p>2、求微分方程<img src="https://img2.meite.com/questions/202212/03638b01839ca7b.png" />的通解.</p><p>答 案:解:对应齐次微分方程的特征方程为<img src="https://img2.meite.com/questions/202212/03638b019490467.png" />,解得r<sub>1</sub>=3,r<sub>2</sub>=-2.所以齐次通解为<img src="https://img2.meite.com/questions/202212/03638b01b0cf47a.png" />。设方程的特解设为y*=(Ax+B)e<sup>x</sup>,代入原微分方程可解得,A=<img src="https://img2.meite.com/questions/202212/03638b01cb92f6c.png" />,B=<img src="https://img2.meite.com/questions/202212/03638b01d9339ef.png" />.即非齐次微分方程特解为<img src="https://img2.meite.com/questions/202212/03638b01ea50130.png" />。所以微分方程<img src="https://img2.meite.com/questions/202212/03638b01f95ca36.png" />的通解为<img src="https://img2.meite.com/questions/202212/03638b0209e7294.png" />。</p><p>3、欲围造一个面积为15000平方米的运动场,其正面材料造价为每平方米600元,其余三面材料造价为每平方米300元,试问正面长为多少米才能使材料费最少?</p><p>答 案:解:设运动场正面围墙长为x米,则宽为<img src="https://img2.meite.com/questions/202211/3063870c5a1f7e1.png" />,设四面围墙高相同,记为h,则四面围墙所用材料费用,f(x)为<img src="https://img2.meite.com/questions/202211/3063870c7358bc8.png" /><img src="https://img2.meite.com/questions/202211/3063870cce56ecc.png" />令<img src="https://img2.meite.com/questions/202211/3063870c9a2e335.png" />得驻点x<sub>1</sub>=100,x<sub>2</sub>=-100(舍掉),<img src="https://img2.meite.com/questions/202211/3063870cdd70784.png" />由于驻点唯一,且实际问题中存在最小值,可知x=100米,侧面长150米时,所用材料费最小。</p><p class="introTit">填空题</p><p>1、交换二次积分的积分次序,<img src="https://img2.meite.com/questions/202212/0163884aa14b346.png" />()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163884ab4284fb.png" /></p><p>解 析:由题设有<img src="https://img2.meite.com/questions/202212/0163884ac5b442b.png" />从而<img src="https://img2.meite.com/questions/202212/0163884adca8d6c.png" />故交换次序后二次积分为<img src="https://img2.meite.com/questions/202212/0163884aebe3b55.png" />。</p><p>2、极限<img src="https://img2.meite.com/questions/202211/29638565e60a121.png" />=()。</p><p>答 案:2</p><p>解 析:<img src="https://img2.meite.com/questions/202211/2963856610bfe18.png" />。</p><p>3、<img src="https://img2.meite.com/questions/202211/186376e1ac23dfb.png" />=()。</p><p>答 案:2</p><p>解 析:<img src="https://img2.meite.com/questions/202211/186376e1be9076c.png" /></p><p class="introTit">简答题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202303/036401a0b4bb252.png" />满足初值条件<img src="https://img2.meite.com/questions/202303/036401a0c888c77.png" />的特解  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401afc1cb58a.png" /> <img src="https://img2.meite.com/questions/202303/036401afd313124.png" />  </p>
相关题库