2024年成考专升本《高等数学一》每日一练试题05月08日
<p class="introTit">单选题</p><p>1、设<img src="https://img2.meite.com/questions/202211/28638483d308536.png" />,则当x→0时()。</p><ul><li>A:f(x)是比g(x)高阶的无穷小</li><li>B:f(x)是比g(x)低阶的无穷小</li><li>C:f(x)与g(x)是同阶的无穷小,但不是等价无穷小</li><li>D:f(x)与g(x)是等价无穷小</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202211/28638483e402cfb.png" /></p><p>2、设y=<img src="https://img2.meite.com/questions/202211/16637492f0c908a.png" />,则dy=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/16637492f609990.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/16637492fa4702f.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/16637492fe6a03d.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/16637493040d110.png' /></li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374930d11eed.png" />。</p><p>3、设<img src="https://img2.meite.com/questions/202212/06638ee4084c439.png" />则<img src="https://img2.meite.com/questions/202212/06638ee4109cd84.png" />=()
</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/06638ee429cd496.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/06638ee42ef3efb.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/06638ee435d2e8c.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/06638ee43c1fc97.png' /></li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ee44aac62c.png" /></p><p class="introTit">主观题</p><p>1、证明:当x>0时,<img src="https://img2.meite.com/questions/202211/176375e0551a913.png" /></p><p>答 案:证:设f(x)=(1+x)ln(1+x)-x,则f'(x)=ln(1+x)。当x>0时,f'(x)=ln(1+x)>0,故f(x)在(0,+∞)内单调增加,<br />且f(0)=0,故x>0时,f(x)>0,<br />即(1+x)Ln(1+x)-x>0,(1+x)ln(1+x)>x。</p><p>2、设e<sup>x</sup>+x=e<sup>y</sup>+y,求<img src="https://img2.meite.com/questions/202211/306387080d77da3.png" />。</p><p>答 案:解:对等式两边同时微分,得<img src="https://img2.meite.com/questions/202211/306387081b5699a.png" />,故<img src="https://img2.meite.com/questions/202211/306387082eaafac.png" />。</p><p>3、设<img src="https://img2.meite.com/questions/202211/166374ab053a051.png" />,求y'.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374acf55bc71.png" /></p><p class="introTit">填空题</p><p>1、设y=f(x)可导,点x<sub>0</sub>=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为()。</p><p>答 案:y=3</p><p>解 析:由于y=f(x)可导,且点x<sub>0</sub>=2为f(x)的极小值点,由极值的必要条件可得<img src="https://img2.meite.com/questions/202211/186376eab73520a.png" />又f(2)=3,可知曲线过点(2,3)的切线方程为<img src="https://img2.meite.com/questions/202211/186376eacb7a1f5.png" /></p><p>2、函数<img src="https://img2.meite.com/questions/202211/176375a282d1b8b.png" />的单调减少区间为()。</p><p>答 案:(-1,1)</p><p>解 析:<img src="https://img2.meite.com/questions/202211/176375a2940aabf.png" />,则y'=x<sup>2</sup>-1.令y'=0,得x<sub>1</sub>=1,x<sub>2</sub>=1.当x<1时,>0,函数单调递增;当-1<x<1时,y'<0,函数y单调递减;当x>1时,y'>0,函数单调递增.故单调减少区间为(-1,1)。</p><p>3、设f(x)=3<sup>x</sup>,g(x)=x<sup>3</sup>,则<img src="https://img2.meite.com/questions/202212/03638afbe35c739.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638afbf104955.png" />·1n3</p><p>解 析:g(x)=x<sup>3</sup>,g'(x)=3x<sup>2</sup>,则<img src="https://img2.meite.com/questions/202212/03638afc2482958.png" />=f'(3x<sup>2</sup>),注意等号右端的含义为f(<img src="https://img2.meite.com/questions/202212/03638afc46bb9ed.png" />)在<img src="https://img2.meite.com/questions/202212/03638afc5095882.png" />=3x<sup>2</sup>处的导数,而f(x)=3<sup>x</sup>,即f(<img src="https://img2.meite.com/questions/202212/03638afc46bb9ed.png" />)=<img src="https://img2.meite.com/questions/202212/03638afc82ae020.png" />,则<img src="https://img2.meite.com/questions/202212/03638afc910e655.png" />=<img src="https://img2.meite.com/questions/202212/03638afc82ae020.png" />ln3,所以<img src="https://img2.meite.com/questions/202212/03638afcab92f99.png" /></p><p class="introTit">简答题</p><p>1、求方程<img src="https://img2.meite.com/questions/202303/17641427a20cfc0.png" />的通解。
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/17641427b60f0c0.png" /></p>