2024年成考专升本《高等数学一》每日一练试题05月02日

聚题库
05/02
<p class="introTit">单选题</p><p>1、设y=3+sinx,则y'=()。</p><ul><li>A:-cosx</li><li>B:cosx</li><li>C:1-cosx</li><li>D:1+cosx</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374514186aec.png" />。</p><p>2、设y=x+lnx,dy=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/1763759a187aa8e.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/1763759a293d569.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/1763759a38c61cf.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/1763759a44bed03.png' /></li></ul><p>答 案:B</p><p>解 析:y=x+lnx,则<img src="https://img2.meite.com/questions/202211/1763759a59cf79f.png" />。</p><p>3、下列极限正确的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/2863847c11dc301.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/2863847c1dd9881.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/2863847c2a6539c.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/2863847c388a5c3.png' /></li></ul><p>答 案:C</p><p>解 析:A项,<img src="https://img2.meite.com/questions/202211/2863847c4584e8a.png" />;B项,<img src="https://img2.meite.com/questions/202211/2863847c534a6cd.png" />;C项,<img src="https://img2.meite.com/questions/202211/2863847c617294c.png" />;D项,<img src="https://img2.meite.com/questions/202211/2863847c73cc617.png" />。</p><p class="introTit">主观题</p><p>1、欲围造一个面积为15000平方米的运动场,其正面材料造价为每平方米600元,其余三面材料造价为每平方米300元,试问正面长为多少米才能使材料费最少?</p><p>答 案:解:设运动场正面围墙长为x米,则宽为<img src="https://img2.meite.com/questions/202211/3063870c5a1f7e1.png" />,设四面围墙高相同,记为h,则四面围墙所用材料费用,f(x)为<img src="https://img2.meite.com/questions/202211/3063870c7358bc8.png" /><img src="https://img2.meite.com/questions/202211/3063870cce56ecc.png" />令<img src="https://img2.meite.com/questions/202211/3063870c9a2e335.png" />得驻点x<sub>1</sub>=100,x<sub>2</sub>=-100(舍掉),<img src="https://img2.meite.com/questions/202211/3063870cdd70784.png" />由于驻点唯一,且实际问题中存在最小值,可知x=100米,侧面长150米时,所用材料费最小。</p><p>2、求过点M<sub>0</sub>(0,2,4),且与两个平面π1,π2都平行的直线方程,其中<img src="https://img2.meite.com/questions/202212/03638af2a68be37.png" /></p><p>答 案:解:如果直线l平行于π1,则平面π1的法线向量n1必定垂直于直线l的方向向量s.同理,直线l平行于π2,则平面π2的法线向量n2必定满足n2⊥s.由向量积的定义可知,取<img src="https://img2.meite.com/questions/202212/03638af2cfcec2f.png" />由于直线l过点M<sub>0</sub>(0,2,4),由直线的标准方程可知<img src="https://img2.meite.com/questions/202212/03638af2eb2ecba.png" />为所求直线方程。</p><p>3、求<img src="https://img2.meite.com/questions/202211/166374818f129f0.png" />.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/1663748193a34ba.png" /><img src="https://img2.meite.com/questions/202211/166374819958327.png" />=2ln2</p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/176375d4a6846cc.png" />()。</p><p>答 案:e<sup>-3</sup></p><p>解 析:所给极限为重要极限的形式,由<img src="https://img2.meite.com/questions/202211/176375d4be3d81b.png" />,可得<img src="https://img2.meite.com/questions/202211/176375d4ca53ef0.png" /></p><p>2、极限<img src="https://img2.meite.com/questions/202211/296385667139477.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/296385671ae0ba5.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/296385673166e5f.png" />。</p><p>3、<img src="https://img2.meite.com/questions/202211/166374977dc9993.png" />=()。</p><p>答 案:ln2</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374978c5ad27.png" /></p><p class="introTit">简答题</p><p>1、求函数f(x)=<img src="https://img2.meite.com/questions/202303/036401a047d0835.png" />的单调区间。  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401af525c8e7.png" /> <img src="https://img2.meite.com/questions/202303/036401af6400cd0.png" /><img src="https://img2.meite.com/questions/202303/036401af706ad1e.png" /> <img src="https://img2.meite.com/questions/202303/036401af8094320.png" /><img src="https://img2.meite.com/questions/202303/036401af8b285df.png" /></p>
相关题库