2024年成考高起点《数学(理)》每日一练试题04月23日
<p class="introTit">单选题</p><p>1、设f(x)=x<sup>3</sup>+ax<sup>2</sup>+x为奇函数,则a=()。</p><ul><li>A:1</li><li>B:0</li><li>C:</li><li>D:-2
D.C.-1
</li></ul><p>答 案:B</p><p>解 析:本题主要考查的知识点为函数的奇偶性.
因为f(x)为奇函数,故f(-x)=-f(x)。即-x<sup>3</sup>+ax<sup>2</sup>-x=-x<sup>3</sup>-ax<sup>2</sup>-x,a=0。</p><p>2、设A、B、C是三个随机事件,用A、B、C的运算关系()表示事件:B、C都发生,而A不发生
</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/2864228843cabb5.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/28642288485090e.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/286422884e00b25.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/2864228852db27c.png' /></li></ul><p>答 案:B</p><p>解 析:选项A,表示A或B发生或C不发生,选项C,表示A不发生或B、C不发生.选项D,表示A发生且 B、C 不发生.</p><p>3、从椭圆与x轴额右交点看短轴两端点的视角为60°的椭圆的离心率()
</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/28642287ed710eb.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/28642287f182bba.png' /></li><li>C:1</li><li>D:<img src='https://img2.meite.com/questions/202303/28642287f85287f.png' /></li></ul><p>答 案:A</p><p>解 析:求椭圆的离心率,先求出a,c.(如图) <img src="https://img2.meite.com/questions/202303/286422892bd4fb5.png" /><img src="https://img2.meite.com/questions/202303/286422893b50a35.png" />,由椭圆定义知<img src="https://img2.meite.com/questions/202303/2864228950523ff.png" />
<img src="https://img2.meite.com/questions/202303/286422895c76294.png" /></p><p>4、若x<y<0,则()。
</p><ul><li>A:<img src='https://img2.meite.com/questions/202404/1966222cf6e9ee9.png' /></li><li>B:<img src='https://img2.meite.com/questions/202404/1966222d006070f.png' /></li><li>C:<img src='https://img2.meite.com/questions/202404/1966222d0861b3e.png' /></li><li>D:<img src='https://img2.meite.com/questions/202404/1966222d1149cd7.png' /></li></ul><p>答 案:D.</p><p>解 析:本题主要考查的知识点为不等式的性质.
因为x<y<0,故<img src="https://img2.meite.com/questions/202404/1966222d1f86e43.png" /></p><p class="introTit">主观题</p><p>1、已知抛物线C:y<sup>2</sup>=2px(p>0)的焦点到准线的距离为1。
(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB</p><p>答 案:(I)由题意,该抛物线的焦点到准线的距离为<img src="https://img2.meite.com/questions/202404/1966222edee972e.png" />
所以抛物线C的方程为<img src="https://img2.meite.com/questions/202404/1966222ee6c66f9.png" />
(Ⅱ)因A(l,m)(m>0)为C上一点,故有m<sup>2</sup>=2,
可得<img src="https://img2.meite.com/questions/202404/1966222ef5c5007.png" />因此A点坐标为<img src="https://img2.meite.com/questions/202404/1966222efb949fc.png" />
设B点坐标为<img src="https://img2.meite.com/questions/202404/1966222f0a5cbbb.png" />则<img src="https://img2.meite.com/questions/202404/1966222f11e9340.png" />
因为<img src="https://img2.meite.com/questions/202404/1966222f17c1b05.png" />则有<img src="https://img2.meite.com/questions/202404/1966222f1dce70a.png" />
即<img src="https://img2.meite.com/questions/202404/1966222f27533ea.png" />解得x0=4
所以B点的坐标为<img src="https://img2.meite.com/questions/202404/1966222f308351e.png" />
</p><p>2、建筑一个容积为8000<img src="https://img2.meite.com/questions/202303/2864224b406cbf6.png" />,深为6m的长方体蓄水池,池壁每<img src="https://img2.meite.com/questions/202303/2864224b5cac16d.png" />的造价为15元,池底每<img src="https://img2.meite.com/questions/202303/2864224b60ac28e.png" />的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/2864224be4311f4.png" /><img src="https://img2.meite.com/questions/202303/2864224bee67713.png" /></p><p>3、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得<img src="https://img2.meite.com/questions/202303/2864228db8c0e49.png" />AB=120m,求河的宽
<img src="https://img2.meite.com/questions/202303/2864228dd64bdcb.png" /></p><p>答 案:如图, <img src="https://img2.meite.com/questions/202303/2864228df3f06d3.png" />
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=<img src="https://img2.meite.com/questions/202303/2864228e8a387f3.png" />=60m,
即河宽为60m
</p><p>4、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p class="introTit">填空题</p><p>1、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/286422989dd2b03.png" /></p><p>解 析:原直线方程可化为<img src="https://img2.meite.com/questions/202303/28642298bab2d76.png" />交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,<img src="https://img2.meite.com/questions/202303/28642298d6bc461.png" />当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,<img src="https://img2.meite.com/questions/202303/28642298ef2aa6b.png" /></p><p>2、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。</p><p>答 案:<img src="https://img2.meite.com/questions/202404/20662380f056b37.png" /></p><p>解 析:本题主要考查的知识点为圆的切线.
设切点(x0,y0)则有<img src="https://img2.meite.com/questions/202404/20662380f985f55.png" />
即<img src="https://img2.meite.com/questions/202404/20662381033a418.png" /><img src="https://img2.meite.com/questions/202404/206623810c425f9.png" />所以<img src="https://img2.meite.com/questions/202404/2066238119981c7.png" />故切点横坐标为<img src="https://img2.meite.com/questions/202404/206623812263a88.png" />
</p>