2024年成考专升本《高等数学一》每日一练试题04月22日
<p class="introTit">单选题</p><p>1、设区域<img src="https://img2.meite.com/questions/202212/01638844dd39531.png" />,则<img src="https://img2.meite.com/questions/202212/01638844ea2b747.png" />=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/01638844f643e91.png' /></li><li>B:1</li><li>C:<img src='https://img2.meite.com/questions/202212/01638845004a817.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/01638845095373c.png' /></li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202212/016388451586059.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202212/03638ae390d4700.png" />()。</p><ul><li>A:0</li><li>B:1</li><li>C:<img src='https://img2.meite.com/questions/202212/03638ae39c54e94.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638ae3a5e5de9.png' /></li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638ae3b60d066.png" />。</p><p>3、<img border="0" style="width: 91px; height: 37px;" src="https://img2.meite.com/zzpuce/2023-04/643679c5549d885369.jpeg">( )</p><ul><li>A:-2</li><li>B:-1</li><li>C:1</li><li>D:2</li></ul><p>答 案:D</p><p>解 析:<img title="电气工程师公共基础,章节练习,基础复习,高等数学" src="https://img2.meite.com/question/2022-03/622a869805c91.jpg" alt="电气工程师公共基础,章节练习,基础复习,高等数学" />项A、B、C、D值分别代入,当a=-2代入时,R(A*) = 1。</p><p class="introTit">主观题</p><p>1、计算二重积分<img src="https://img2.meite.com/questions/202212/03638b011375882.png" />,其中D是由曲线y=1-x<sup>2</sup>与y=x<sup>2</sup>-1所围成.</p><p>答 案:解:积分区域D如图所示<img src="https://img2.meite.com/questions/202212/03638b013842bb7.png" />。<img src="https://img2.meite.com/questions/202212/03638b0156e7367.png" />解得两组解,对应两个交点(-1,0),(1,0)。<img src="https://img2.meite.com/questions/202212/03638b016c67343.png" /></p><p>2、求微分方程y'-<img src="https://img2.meite.com/questions/202212/03638ac17eaa5ba.png" />=lnx满足初始条件<img src="https://img2.meite.com/questions/202212/03638ac1908c65f.png" />=1的特解。</p><p>答 案:解:P(x)=<img src="https://img2.meite.com/questions/202212/03638ac1a3efa02.png" />,Q(x)=lnx,则<img src="https://img2.meite.com/questions/202212/03638ac1b4c4f05.png" />所以<img src="https://img2.meite.com/questions/202212/03638ac1c719a0f.png" />将<img src="https://img2.meite.com/questions/202212/03638ac1d4d883b.png" />=1代入y式,得C=1.故所求特解为<img src="https://img2.meite.com/questions/202212/03638ac2042e0a4.png" />。</p><p>3、计算极限<img src="https://img2.meite.com/questions/202212/03638aef4427f0d.png" />.</p><p>答 案:解:原式=<img src="https://img2.meite.com/questions/202212/03638aef52f2b16.png" /></p><p class="introTit">填空题</p><p>1、设<img src="https://img2.meite.com/questions/202211/16637457a4652c2.png" />,则y'=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/16637457ab0d441.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637457b1b8bf2.png" /><img src="https://img2.meite.com/questions/202211/16637457b74848e.png" /></p><p>2、级数<img src="https://img2.meite.com/questions/202212/0163885ee7af878.png" />()收敛。</p><p>答 案:绝对</p><p>解 析:因为<img src="https://img2.meite.com/questions/202212/0163885efa56e92.png" />,又级数<img src="https://img2.meite.com/questions/202212/0163885f06c8211.png" />收敛,所以<img src="https://img2.meite.com/questions/202212/0163885f187bb6c.png" />绝对收敛。</p><p>3、设I=<img src="https://img2.meite.com/questions/202303/176414030ee674e.png" />交换积分次序,则有I=()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414032f6347a.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/1764140336b7f20.png" />的积分区域<img src="https://img2.meite.com/questions/202303/176414034e05ef7.png" /><img src="https://img2.meite.com/questions/202303/17641403566791e.png" /><img src="https://img2.meite.com/questions/202303/176414035c360c7.png" /></p><p class="introTit">简答题</p><p>1、求曲线<img src="https://img2.meite.com/questions/202303/1764141962bce94.png" />的拐点;
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414197b7dfd3.png" />
</p>