2024年成考专升本《高等数学一》每日一练试题04月12日
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202212/03638ae588c44f4.png" />()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/03638ae5946a99f.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/03638ae5a0a586c.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/03638ae5ab2c9de.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638ae5b7db878.png' /></li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638ae5cad7d82.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202211/1663744f0c6c11c.png" />=()。</p><ul><li>A:e</li><li>B:1</li><li>C:e<sup>-1</sup></li><li>D:-e</li></ul><p>答 案:C</p><p>解 析:由于<img src="https://img2.meite.com/questions/202211/1663744f455aaf1.png" />为连续函数,x=0在函数的定义区间内,因此可直接将x=0代入函数求极限,得<img src="https://img2.meite.com/questions/202211/1663744f5725477.png" />。</p><p>3、下列等式成立的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/28638480573b3e7.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/28638480611578b.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/286384806d4d475.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/286384807ac325b.png' /></li></ul><p>答 案:D</p><p>解 析:A项,由<img src="https://img2.meite.com/questions/202211/28638480d2b2cbb.png" />,可知<img src="https://img2.meite.com/questions/202211/28638480e0e1db3.png" />;B项,<img src="https://img2.meite.com/questions/202211/28638480ee2b9c1.png" />;C项,<img src="https://img2.meite.com/questions/202211/2863848104d297c.png" />;D项,<img src="https://img2.meite.com/questions/202211/286384811706b9d.png" />。</p><p class="introTit">主观题</p><p>1、设函数f(x)由<img src="https://img2.meite.com/questions/202211/176375a9a462105.png" />所确定,求<img src="https://img2.meite.com/questions/202211/176375a9b68f239.png" /></p><p>答 案:解:方法一:方程两边同时对x求导,得<img src="https://img2.meite.com/questions/202211/176375a9cd89294.png" />即<img src="https://img2.meite.com/questions/202211/176375a9de829b7.png" />故<img src="https://img2.meite.com/questions/202211/176375a9ec6e2cb.png" /><br />方法二:设<img src="https://img2.meite.com/questions/202211/176375a9fdad664.png" />,<br />则<img src="https://img2.meite.com/questions/202211/176375aa1004c84.png" /><img src="https://img2.meite.com/questions/202211/176375aa1f17e53.png" /></p><p>2、设函数<img src="https://img2.meite.com/questions/202211/176375db759e97f.png" />,求f(x)的极大值</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/176375dba527fd6.png" />当x<-1或x>3时,f′(x)>0,f(x)单调增加;当-1<x<3时,f′(x)<0,f(x)单调减少。<br />故x<sub>1</sub>=-1是f(x)的极大值点,<br />极大值为f(-1)=5。</p><p>3、计算<img src="https://img2.meite.com/questions/202212/0163880f1f1db81.png" /></p><p>答 案:解:令<img src="https://img2.meite.com/questions/202212/0163880f2c78d6e.png" />当x=4时,t=2;当x=9时,t=3。则有<img src="https://img2.meite.com/questions/202212/0163880f445e340.png" /><img src="https://img2.meite.com/questions/202212/0163880f6263be5.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/306387226310eea.png" />()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306387226d94c7a.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/306387227bd7f3f.png" /><img src="https://img2.meite.com/questions/202211/306387228a7d785.png" /></p><p>2、广义积分<img src="https://img2.meite.com/questions/202212/01638805ac70a46.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/01638805b690ea3.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638805c7b9370.png" />。</p><p>3、过坐标原点且与平面2x-y+z+1=0平行的平行方程为()。</p><p>答 案:2x-y+z=0</p><p>解 析:已知平面的法线向量为(2,-1,1),所求平面与已知平面平行<img src="https://img2.meite.com/questions/202211/1663745885379d6.png" />,因此平面方程可设为<img src="https://img2.meite.com/questions/202211/166374589042355.png" />,又平面过原点,故D=0,即所求平面方程为2x-y+z=0。</p><p class="introTit">简答题</p><p>1、证明:当x>0时<img src="https://img2.meite.com/questions/202303/036401a13497bbc.png" />>1+x.
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401aff003c5f.png" /></p>