2024年成考专升本《高等数学一》每日一练试题04月08日

聚题库
04/08
<p class="introTit">单选题</p><p>1、不定积分<img src="https://img2.meite.com/questions/202212/03638af7d6d3687.png" />等于()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/03638af7e0ccfdd.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/03638af7e975c00.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/03638af7f1b1b13.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638af7f984466.png' /></li></ul><p>答 案:A</p><p>解 析:令t=sinx,则原式=<img src="https://img2.meite.com/questions/202212/03638af807ee992.png" />,再将令t=sinx代入还原,可得<img src="https://img2.meite.com/questions/202212/03638af8194374b.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202211/1763759ae3c3f5b.png" />()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/1763759aeee6b92.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/1763759af8f1896.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/1763759b0456f04.png' /></li><li>D:0</li></ul><p>答 案:D</p><p>解 析:被积函数x<sup>5</sup>为奇函数,积分区间[1,1]为对称区间,由定积分对称性质可知<img src="https://img2.meite.com/questions/202211/1763759b975cbfc.png" />。</p><p>3、设直线<img src="https://img2.meite.com/questions/202212/016388199adcb74.png" />,则直线l()。</p><ul><li>A:过原点且平行于x轴</li><li>B:不过原点但平行于x轴</li><li>C:过原点且垂直于x轴</li><li>D:不过原点但垂直于x轴</li></ul><p>答 案:C</p><p>解 析:将原点(0,0,0)代入直线方程成等式,可知直线过原点(或由直线方程<img src="https://img2.meite.com/questions/202212/0163881aa46c445.png" />表示过原点的直线得出上述结论),直线的方向向量为(0,2,1),与x轴同方向的单位向量为(1,0,0),且(0,2,1)×(1,0,0)=0,可知所给直线与x轴垂直。</p><p class="introTit">主观题</p><p>1、设f(x,y)为连续函数,交换二次积分<img src="https://img2.meite.com/questions/202212/01638852a69d533.png" />的积分次序。</p><p>答 案:解:由题设知<img src="https://img2.meite.com/questions/202212/01638852b7b66e1.png" />中积分区域的图形应满足1≤x≤e,0≤y≤lnx,因此积分区域的图形见下图中阴影部分<img src="https://img2.meite.com/questions/202212/01638852ea3b3a1.png" />.由y=lnx,有x=e<sup>y</sup>。所以<img src="https://img2.meite.com/questions/202212/0163885309c8a22.png" />。</p><p>2、求微分方程<img src="https://img2.meite.com/questions/202212/03638ac38e5fd44.png" />的通解。</p><p>答 案:解:对应的齐次方程为<img src="https://img2.meite.com/questions/202212/03638ac39bb126c.png" />。特征方程<img src="https://img2.meite.com/questions/202212/03638ac3abef614.png" />,特征根<img src="https://img2.meite.com/questions/202212/03638ac3bb18486.png" />齐次方程通解为<img src="https://img2.meite.com/questions/202212/03638ac3c81e1f0.png" />原方程特解为<img src="https://img2.meite.com/questions/202212/03638ac3d7442b3.png" />,代入原方程可得<img src="https://img2.meite.com/questions/202212/03638ac3ea0899f.png" />,因此<img src="https://img2.meite.com/questions/202212/03638ac3fe7cb5d.png" />。<br />方程通解为<img src="https://img2.meite.com/questions/202212/03638ac40c27e0d.png" /></p><p>3、求y'+<img src="https://img2.meite.com/questions/202212/03638abf7b42c03.png" />=1的通解.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638abf8ac5f6c.png" /></p><p class="introTit">填空题</p><p>1、设<img src="https://img2.meite.com/questions/202212/08639145492eaf4.png" />,则<img src="https://img2.meite.com/questions/202212/086391455498dd1.png" />()</p><p>答 案:0</p><p>解 析:<img src="https://img2.meite.com/questions/202212/086391455f2fc4b.png" />,<img src="https://img2.meite.com/questions/202212/086391456a2d526.png" /></p><p>2、过点(1,0,-1)与平面3x-y-z-2=0平行的平面的方程为()</p><p>答 案:3x-y-z-4=0</p><p>解 析:平面3x-y-z-2=0的法向量为(3,-1,-1),所求平面与其平行,故所求的平面的法向量为(3,-1,-1),由平面的点法式方程得所求平面方程为3(x-1)-(y-0)-(z+1)=0,及3x-y-z-4=0。</p><p>3、设z=arctanxy,则<img src="https://img2.meite.com/questions/202212/016388488057895.png" />+<img src="https://img2.meite.com/questions/202212/016388488b08cef.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163884895bf306.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638848cf2d5c9.png" />,故<img src="https://img2.meite.com/questions/202212/01638848de73a53.png" />。</p><p class="introTit">简答题</p><p>1、设函数<img src="https://img2.meite.com/questions/202303/036401a023d2795.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401af4921316.png" /></p>
相关题库