2024年成考高起点《数学(理)》每日一练试题04月05日
<p class="introTit">单选题</p><p>1、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/15641165746df3c.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/1564116579ce1fd.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/156411657f3914e.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/1564116582cc298.png' /></li></ul><p>答 案:B</p><p>解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b<sup>2</sup>=16,故双曲线方程为<img src="https://img2.meite.com/questions/202303/15641169fee41e2.png" /></p><p>2、已知偶函数y=f(x),在区间[a,b](0<a<b)上是增函数,那么它在区间[-b,-a]上是()
</p><ul><li>A:增函数</li><li>B:减函数</li><li>C:不是单调函数</li><li>D:常数</li></ul><p>答 案:B</p><p>解 析:由偶函数的性质:偶函数在[a,b]和[-b,-a]上有相反的单调性,可知,y=f(x)在区间[a,b](0<a<b)上是增函数,他在[-b,-a]是减函数,此题考查函数的性质,因为y=f(x)为偶函数,所以f(-a)=f(a),f(-b)=f(b),又因为f(a)<f(b),所以f(-a)<f(-b),即f(-b)>f(-a),所以f(x)在[-b,-a]上是减函数。</p><p>3、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则其中恰有1个红球的概率为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/15641165c5e79d0.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/15641165cb7ed67.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/15641165d0b1aa2.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/15641165d3de24c.png' /></li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202303/1564116ab1b1548.png" /></p><p>4、(2-3i)<sup>2</sup>=()</p><ul><li>A:13-6i</li><li>B:13-12i</li><li>C:-5-6i</li><li>D:-5-12i</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202303/15641169af99ac7.png" /></p><p class="introTit">主观题</p><p>1、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p>2、在正四棱柱ABCD-A'B'C'D'中,<img src="https://img2.meite.com/questions/202303/2864229a3bc3098.png" />
(Ⅰ)写出向量<img src="https://img2.meite.com/questions/202303/2864229a57ba174.png" />和<img src="https://img2.meite.com/questions/202303/2864229a5e46ac8.png" />关于基底{a,b,c}的分解式;
(Ⅱ)求证:<img src="https://img2.meite.com/questions/202303/2864229a76ba56d.png" />
(Ⅲ)求证:<img src="https://img2.meite.com/questions/202303/2864229a7fdd541.png" />
</p><p>答 案:(Ⅰ)由题意知(如图所示) <img src="https://img2.meite.com/questions/202303/2864229af6b1567.png" />
<img src="https://img2.meite.com/questions/202303/2864229afe90f50.png" />
<img src="https://img2.meite.com/questions/202303/2864229b08314c5.png" />
</p><p>3、在△ABC中,B=120°,BC=4,△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />,求AC.</p><p>答 案:由△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />得<img src="https://img2.meite.com/questions/202303/1564116bba3c98d.png" />所以AB =4.因此<img src="https://img2.meite.com/questions/202303/1564116be4bebd5.png" />所以<img src="https://img2.meite.com/questions/202303/1564116be967e8f.png" /></p><p>4、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得<img src="https://img2.meite.com/questions/202303/2864228db8c0e49.png" />AB=120m,求河的宽
<img src="https://img2.meite.com/questions/202303/2864228dd64bdcb.png" /></p><p>答 案:如图, <img src="https://img2.meite.com/questions/202303/2864228df3f06d3.png" />
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=<img src="https://img2.meite.com/questions/202303/2864228e8a387f3.png" />=60m,
即河宽为60m
</p><p class="introTit">填空题</p><p>1、lg(tan43°tan45°tan47°)=()
</p><p>答 案:0</p><p>解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0</p><p>2、函数<img src="https://img2.meite.com/questions/202303/28642285dd68e2c.png" />的定义域是()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/28642285f367786.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/28642285fcec513.png" /><img src="https://img2.meite.com/questions/202303/2864228601aa2da.png" />所以函数<img src="https://img2.meite.com/questions/202303/286422860d8135c.png" />的定义域是<img src="https://img2.meite.com/questions/202303/286422861644b62.png" /></p>