2024年成考专升本《高等数学一》每日一练试题04月05日
<p class="introTit">单选题</p><p>1、函数z=f(x,y)在点P(x,y)处的偏导数<img src="https://img2.meite.com/questions/202212/01638843564cb0c.png" />,<img src="https://img2.meite.com/questions/202212/0163884362105e6.png" />为连续函数,是函数z=f(x,y)在点P(x,y)处可微分的()。</p><ul><li>A:充分条件</li><li>B:必要条件</li><li>C:充分必要条件</li><li>D:既非充分也非必要条件</li></ul><p>答 案:A</p><p>解 析:由多元函数微分的充分条件可知,函数z=f(x,y)在点P(x,y)处的偏导数<img src="https://img2.meite.com/questions/202212/01638843bed25f2.png" />,<img src="https://img2.meite.com/questions/202212/01638843d72088f.png" />为连续函数,是函数z=f(x,y)在点P(x,y)处可微分的充分条件。</p><p>2、<img src="https://img2.meite.com/questions/202211/176375ae3458f62.png" />=()。</p><ul><li>A:3</li><li>B:2</li><li>C:1</li><li>D:0</li></ul><p>答 案:C</p><p>解 析:x<sup>2</sup>+1在(-∞,∞)都是连续的,函数在连续区间的极限,可直接代入求得,<img src="https://img2.meite.com/questions/202211/176375ae7100201.png" />=0+1=1。</p><p>3、<img src="https://img2.meite.com/questions/202211/1663748edca11a0.png" />()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/1663748ee1f3963.png' /></li><li>B:1</li><li>C:2</li><li>D:不存在</li></ul><p>答 案:A</p><p>解 析:由重要极限公式<img src="https://img2.meite.com/questions/202211/1663748ee828db4.png" />,得<img src="https://img2.meite.com/questions/202211/1663748eef60a15.png" />。</p><p class="introTit">主观题</p><p>1、求<img src="https://img2.meite.com/questions/202211/186376ef0f207ed.png" />其中<img src="https://img2.meite.com/questions/202211/186376ef20557ae.png" /></p><p>答 案:解:D在极坐标系下可以表示为<img src="https://img2.meite.com/questions/202211/186376ef330a6ec.png" />则<img src="https://img2.meite.com/questions/202211/186376ef4baac2c.png" /><img src="https://img2.meite.com/questions/202211/186376ef5c72ad1.png" /></p><p>2、求<img src="https://img2.meite.com/questions/202211/186376ecae26136.png" />.</p><p>答 案:解:微分方程的通解为<img src="https://img2.meite.com/questions/202211/186376ecc6c2990.png" /><img src="https://img2.meite.com/questions/202211/186376ecdd1d1da.png" /></p><p>3、求<img src="https://img2.meite.com/questions/202212/03638b0088ad0a6.png" />.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638b009717ff9.png" />=<img src="https://img2.meite.com/questions/202212/03638b00a50e0a6.png" />。</p><p class="introTit">填空题</p><p>1、设f(x)=<img src="https://img2.meite.com/questions/202303/17641406a5c3b50.png" />则<img src="https://img2.meite.com/questions/202303/17641406b0b530c.png" />()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/17641406c00df74.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/17641406c9c0de4.png" /><img src="https://img2.meite.com/questions/202303/17641406d8a7369.png" /><img src="https://img2.meite.com/questions/202303/17641406de65178.png" /></p><p>2、曲线y=<img src="https://img2.meite.com/questions/202212/03638afd3e746a1.png" />与直线y=x,x=2围成的图形面积为()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638afd4d17c12.png" />-1n2</p><p>解 析:由题作图<img src="https://img2.meite.com/questions/202212/03638afd58e2b10.png" />,由图可知所求面积为<img src="https://img2.meite.com/questions/202212/03638afd6d4bb4d.png" /></p><p>3、微分方程xy'=1的通解是()。</p><p>答 案:y=<img src="https://img2.meite.com/questions/202212/0163886d949a89d.png" /></p><p>解 析:分离变量,得dy=<img src="https://img2.meite.com/questions/202212/0163886da20a890.png" />dx,两边同时积分<img src="https://img2.meite.com/questions/202212/0163886db23b00f.png" />,得y=<img src="https://img2.meite.com/questions/202212/0163886d949a89d.png" />,即为方程的通解。</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202303/1764140b5eb19d9.png" /></p><p>答 案:<img src="https://img2.meite.com/questions/202303/1764140b998c053.png" /></p>