2024年成考专升本《高等数学一》每日一练试题04月04日
<p class="introTit">单选题</p><p>1、用待定系数法求微分方程<img src="https://img2.meite.com/questions/202212/03638af8fa8d385.png" />的一个特解时,特解的形式是().(式中a、b是常数)</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/03638af9087ded9.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/03638af9126e58f.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/03638af91c17a5c.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638af928d5879.png' /></li></ul><p>答 案:A</p><p>解 析:y″-y=0的特征方程是r<sup>2</sup>-1=0,特征根为r<sub>1</sub>=1,r<sub>2</sub>=-1.y″-y=xe<sup>x</sup>中自由项f(x)=xe<sup>x</sup>,a=1是特征单根,则特解为y*=x(ax+b)e<sup>x</sup>=(ax<sup>2</sup>+bx)e<sup>x</sup>。</p><p>2、级数<img src="https://img2.meite.com/questions/202212/0163885515b244e.png" />(k为非零常数)()。</p><ul><li>A:发散</li><li>B:绝对收敛</li><li>C:条件收敛</li><li>D:收敛性与k有关</li></ul><p>答 案:C</p><p>解 析:级数各项取绝对值得级数<img src="https://img2.meite.com/questions/202212/016388552b2e6d2.png" />为发散级数;由莱布尼茨判别法可知<img src="https://img2.meite.com/questions/202212/016388553fc0466.png" />收敛,故<img src="https://img2.meite.com/questions/202212/0163885551ad5f1.png" />为条件收敛。</p><p>3、若函数F(x)和G(x)都是函数f(x)的原函数,则下列四个式子,正确的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/3063871e243b9c8.png' /></li><li>B:F(x)+G(x)=C</li><li>C:F(x)=G(x)+1</li><li>D:F(x)-G(x)=C</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202211/3063871e3d85511.png" />。</p><p class="introTit">主观题</p><p>1、<img src="https://img2.meite.com/question/import/38122ef5ca6e8921ffc7a5a4cc1b3783.png" /></p><p>答 案:<img src="https://img2.meite.com/question/import/5dba69a2724d60821a1a3610ad6ceb11.png" /></p><p>2、计算<img src="https://img2.meite.com/questions/202211/186376ec83dcea9.png" />.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/186376ec9f1c369.png" /></p><p>3、求<img src="https://img2.meite.com/questions/202211/2963856b9fa7d50.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856bb1eca82.png" /><img src="https://img2.meite.com/questions/202211/2963856bc769de2.png" /></p><p class="introTit">填空题</p><p>1、设I=<img src="https://img2.meite.com/questions/202303/176414030ee674e.png" />交换积分次序,则有I=()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414032f6347a.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/1764140336b7f20.png" />的积分区域<img src="https://img2.meite.com/questions/202303/176414034e05ef7.png" /><img src="https://img2.meite.com/questions/202303/17641403566791e.png" /><img src="https://img2.meite.com/questions/202303/176414035c360c7.png" /></p><p>2、过原点且垂直于y轴的平面方程为()。</p><p>答 案:y=0</p><p>解 析:过原点且垂直于y轴的平面即x轴所在的平面,方程为y=0。</p><p>3、设<img src="https://img2.meite.com/questions/202211/30638724010ae21.png" />,则f(x)=()。</p><p>答 案:6x<sup>2</sup></p><p>解 析:对题设方程两边求导,即得<img src="https://img2.meite.com/questions/202211/306387242950295.png" />。</p><p class="introTit">简答题</p><p>1、设函数z(x,y)由方程<img src="https://img2.meite.com/questions/202303/176414074ee99be.png" />所确定
证明:<img src="https://img2.meite.com/questions/202303/176414075c587da.png" /></p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414076fa1487.png" /> <img src="https://img2.meite.com/questions/202303/176414077960454.png" />所以<img src="https://img2.meite.com/questions/202303/176414077fe7935.png" /><img src="https://img2.meite.com/questions/202303/17641407920ce9d.png" />
</p>