2024年成考专升本《高等数学一》每日一练试题04月03日

聚题库
04/03
<p class="introTit">单选题</p><p>1、如果级数<img src="https://img2.meite.com/questions/202212/016388565aa2005.png" />收敛,那么以下级数收敛的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/01638856693a12a.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/01638856729a2d8.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/016388567c54e3e.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/0163885686f3f8b.png' /></li></ul><p>答 案:A</p><p>解 析:A项。级数<img src="https://img2.meite.com/questions/202212/016388569477790.png" />收敛,则<img src="https://img2.meite.com/questions/202212/01638856a1d6cfc.png" />收敛;由极限收敛的必要条件可知,<img src="https://img2.meite.com/questions/202212/01638856b353526.png" />=0,则B项,<img src="https://img2.meite.com/questions/202212/01638856c5ef172.png" />=1;C项,<img src="https://img2.meite.com/questions/202212/01638856d39abc7.png" />;D项,<img src="https://img2.meite.com/questions/202212/01638856e95c74d.png" />。</p><p>2、设<img src="https://img2.meite.com/questions/202211/176375987592f2d.png" />,则y'=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/176375988687ba4.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/1763759893ae533.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/176375989ed230a.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/17637598ab8c549.png' /></li></ul><p>答 案:C</p><p>解 析:y=x<sup>4</sup>,则<img src="https://img2.meite.com/questions/202211/17637598c296ca6.png" />。</p><p>3、当x→0时,<img src="https://img2.meite.com/questions/202211/2863848346e0955.png" />与1-cosx比较,可得()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/286384835ef41b5.png' />是较1-cosx高阶的无穷小量</li><li>B:<img src='https://img2.meite.com/questions/202211/286384836049dd1.png' />是较1-cosx低阶的无穷小量</li><li>C:<img src='https://img2.meite.com/questions/202211/2863848361ac933.png' />与1-cosx是同阶无穷小量,但不是等价无穷小量</li><li>D:<img src='https://img2.meite.com/questions/202211/2863848363a9f99.png' />与1-cosx是等价无穷小量</li></ul><p>答 案:B</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/28638483a1af7dc.png" />,所以<img src="https://img2.meite.com/questions/202211/28638483ac91a76.png" />是较1-cosx的低阶无穷小量。</p><p class="introTit">主观题</p><p>1、试证:当x>0时,有不等式<img src="https://img2.meite.com/questions/202212/03638affc6aa0f3.png" /></p><p>答 案:证:先证x>sinx(x>0)。设f(x)=x-sinx,则f(x)=1-cosx≥0(x>0),所以f(x)为单调递增函数,于是对x>0有f(x)>f(0)=0,即x-sinx>0,亦即x>sinx(x>0)。再证<img src="https://img2.meite.com/questions/202212/03638affee811dd.png" /><br />令<img src="https://img2.meite.com/questions/202212/03638afffc44f70.png" /><br />则<img src="https://img2.meite.com/questions/202212/03638b0009b99c4.png" />,所以g'(x)单调递增,又g'(x)=0,可知g'(x)>g'(0)=0(x>0),那么有g(x)单调递增,又g(0)=0,可知g(x)>g(0)=0(x>0),所以<img src="https://img2.meite.com/questions/202212/03638b0054d6d06.png" />即<img src="https://img2.meite.com/questions/202212/03638b0063d9343.png" /><br />综上可得:当x>0时,<img src="https://img2.meite.com/questions/202212/03638b007c4f31d.png" />。</p><p>2、求<img src="https://img2.meite.com/questions/202211/186376ef0f207ed.png" />其中<img src="https://img2.meite.com/questions/202211/186376ef20557ae.png" /></p><p>答 案:解:D在极坐标系下可以表示为<img src="https://img2.meite.com/questions/202211/186376ef330a6ec.png" />则<img src="https://img2.meite.com/questions/202211/186376ef4baac2c.png" /><img src="https://img2.meite.com/questions/202211/186376ef5c72ad1.png" /></p><p>3、设<img src="https://img2.meite.com/questions/202211/2963856c2de4338.png" />求C的值。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856c7163364.png" />则<img src="https://img2.meite.com/questions/202211/2963856cb44e6d7.png" />,有<img src="https://img2.meite.com/questions/202211/2963856cc277361.png" />,<img src="https://img2.meite.com/questions/202211/2963856cd1025c5.png" />。</p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202303/1764141bea38c4f.png" />()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/1764141c03d308e.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/1764141c185c3e5.png" /><img src="https://img2.meite.com/questions/202303/1764141c1fe101b.png" /></p><p>2、微分方程y"+2y'+y=0满足初始条件<img src="https://img2.meite.com/questions/202212/02638958b6bd20a.png" />,<img src="https://img2.meite.com/questions/202212/02638958c4c632d.png" />的特解是()。</p><p>答 案:(2+5x)e<sup>-x</sup></p><p>解 析:微分方程的特征方程为<img src="https://img2.meite.com/questions/202212/02638958dd1b432.png" />,得<img src="https://img2.meite.com/questions/202212/02638958ea972f8.png" />,微分方程的通解为<img src="https://img2.meite.com/questions/202212/02638958f9950e9.png" />.将<img src="https://img2.meite.com/questions/202212/0263895905dec75.png" />,<img src="https://img2.meite.com/questions/202212/0263895913c0ae4.png" />代入得<img src="https://img2.meite.com/questions/202212/0263895923131b1.png" />,<img src="https://img2.meite.com/questions/202212/026389592f3ee81.png" />,则<img src="https://img2.meite.com/questions/202212/026389593e3bb42.png" />.故微分方程通解为<img src="https://img2.meite.com/questions/202212/026389594fa6b48.png" />。</p><p>3、若级数<img src="https://img2.meite.com/questions/202212/0163885fc36d9dd.png" />条件收敛(其中k>0为常数),则k的取值范围是()。</p><p>答 案:0<k≤l</p><p>解 析:k>1时,级数各项取绝对值,得正项级数<img src="https://img2.meite.com/questions/202212/0163885fe0df37f.png" />,是收敛的p级数,从而原级数绝对收敛;当0<k≤l时,由莱布尼茨交错级数收敛性条件可判明原级数条件收敛,因此应有0<k≤1。</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202303/17641426bb3e6fd.png" /></p><p>答 案:<img src="https://img2.meite.com/questions/202303/17641426cdbf5a7.png" /></p>
相关题库