2024年成考专升本《高等数学二》每日一练试题04月02日

聚题库
04/02
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()  </p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" />  </p><p class="introTit">单选题</p><p>1、下列变量在给定的变化过程中是无穷小量的是()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/206417ce8f2c3b1.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/206417cec99c4a4.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/206417ced214f2c.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/206417ceee8d55f.png' /></li></ul><p>答 案:D</p><p>解 析:由<img src="https://img2.meite.com/questions/202303/206417cf23b6e0f.png" />故由无穷小量知应选D,<img src="https://img2.meite.com/questions/202303/206417cf4bbe3bd.png" /></p><p>2、设f'(x)在-闭区间[0,1]上连续,则曲线y=f(x)与直线x=0,x=1和y=0所围成的平面图形的面积等于()</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/0763902c77052f0.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/0763902c82b2b13.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/0763902c8fc1abf.png' /></li><li>D:不确定</li></ul><p>答 案:C</p><p>解 析:由定积分的几何意义可知,当在区间[a,b]上<img src="https://img2.meite.com/questions/202212/0763902ca72050e.png" />时,<img src="https://img2.meite.com/questions/202212/0763902dca58e8c.png" />表示曲线y=f(x)与两条直线x=a,x=b以及x轴所围成的曲边梯形的面积;当在区间[a,b]上<img src="https://img2.meite.com/questions/202212/0763902e65ec6bd.png" />时,<img src="https://img2.meite.com/questions/202212/0763902e72890cd.png" />表示曲线y=f(x)与两条直线x=a,x=b以及x轴所围成的曲边梯形面积的负值</p><p class="introTit">主观题</p><p>1、袋中有10个乒乓球.其中6个白球、4个黄球,随机地抽取两次,每次取1个,不放回.设A={第一次取到白球),B={第二次取到白球},求P(B|A).</p><p>答 案:解:因为样本空间的基本事件有<img src="https://img2.meite.com/questions/202212/08639181d5ba642.png" />个.而AB表示第一次取白球且第二次也取白球,故引起事件AB的基本事件有<img src="https://img2.meite.com/questions/202212/08639181e48c844.png" />个,所以<img src="https://img2.meite.com/questions/202212/08639181f538b34.png" />而<img src="https://img2.meite.com/questions/202212/086391820301908.png" />;所以<img src="https://img2.meite.com/questions/202212/0863918212099fd.png" />;</p><p>2、设事件A与B相互独立,<img src="https://img2.meite.com/questions/202212/0863917baf10c70.png" />,<img src="https://img2.meite.com/questions/202212/0863917bba46883.png" />,<img src="https://img2.meite.com/questions/202212/0863917bc65a5bd.png" />,求q.</p><p>答 案:解:因为事件A与B相互独立,故<img src="https://img2.meite.com/questions/202212/0863917c1276717.png" />,<img src="https://img2.meite.com/questions/202212/0863917c219eabb.png" />,即<img src="https://img2.meite.com/questions/202212/0863917c331e4b2.png" />,解得<img src="https://img2.meite.com/questions/202212/0863917c4c3ff46.png" />=<img src="https://img2.meite.com/questions/202212/0863917c58641ed.png" />.</p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202212/0863914040da2e2.png" />()</p><p>答 案:<img src="https://img2.meite.com/questions/202212/08639140519a78c.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/08639140602075c.png" /></p><p>2、已知<img src="https://img2.meite.com/questions/202212/076390322a88dff.png" />,且f(x)在[a,b]连续,则由曲线y=f(x),x=a、x=b及x轴围成的平面图形的面积A=().</p><p>答 案:<img src="https://img2.meite.com/questions/202212/076390324a9cdf2.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/0763903255a4c9d.png" />,则有<img src="https://img2.meite.com/questions/202212/076390326234373.png" /></p><p class="introTit">简答题</p><p>1、求函数<img src="https://img2.meite.com/questions/202212/06638ed915483af.png" />的单调区间、极值及凹凸区间.  </p><p>答 案:函数定义域为<img src="https://img2.meite.com/questions/202212/06638ed949685f2.png" /> 求导得<img src="https://img2.meite.com/questions/202212/06638ed953f3056.png" />令<img src="https://img2.meite.com/questions/202212/06638ed95e80a90.png" />得<img src="https://img2.meite.com/questions/202212/06638ed966b2b31.png" /> 列表得<img src="https://img2.meite.com/questions/202212/06638ed978b781e.png" /> 函数<img src="https://img2.meite.com/questions/202212/06638ed9856cfaa.png" />的单调增加区间为<img src="https://img2.meite.com/questions/202212/06638ed9b10a910.png" />单调减少区间为<img src="https://img2.meite.com/questions/202212/06638ed9bd94c42.png" /><img src="https://img2.meite.com/questions/202212/06638ed9c35852d.png" />为极大值,<img src="https://img2.meite.com/questions/202212/06638ed9cf63ef2.png" />极小值;凸区间为<img src="https://img2.meite.com/questions/202212/06638ed9ee9bb53.png" />凹区间为<img src="https://img2.meite.com/questions/202212/06638eda01249f0.png" />。</p><p>2、已知函数f(x)=ax<sup>3</sup>-bx<sup>2</sup>+cx在区间<img src="https://img2.meite.com/questions/202212/07639002a0c63f6.png" />内是奇函数,且当x=1时,f(x)有极小值<img src="https://img2.meite.com/questions/202212/07639002ba72fe4.png" />,求另一个极值及此曲线的拐点.  </p><p>答 案:f(x)=ax<sup>3</sup>-bx<sup>2</sup>+cx,<img src="https://img2.meite.com/questions/202212/07639002da708ed.png" /> 由于f(x)是奇函数,则必有x<sup>2</sup>的系数为0,即b=0. <img src="https://img2.meite.com/questions/202212/07639003148fbf6.png" />即a+c=<img src="https://img2.meite.com/questions/202212/076390032089cb2.png" />,<img src="https://img2.meite.com/questions/202212/0763900324b36b3.png" />得3a+c=0.解得a=<img src="https://img2.meite.com/questions/202212/076390033fe0499.png" />c=<img src="https://img2.meite.com/questions/202212/0763900347cfddd.png" /> 此时<img src="https://img2.meite.com/questions/202212/07639003591bd3b.png" /> 令<img src="https://img2.meite.com/questions/202212/0763900361d0796.png" />得<img src="https://img2.meite.com/questions/202212/07639003674342f.png" /><img src="https://img2.meite.com/questions/202212/076390036dd8f49.png" />所以<img src="https://img2.meite.com/questions/202212/076390037794ea3.png" />为极大值,<img src="https://img2.meite.com/questions/202212/07639003826209a.png" />得x=0,x<0时,<img src="https://img2.meite.com/questions/202212/0763900396d70f8.png" /> 所以(0,0)为曲线的拐点.</p>
相关题库