2024年成考高起点《数学(理)》每日一练试题03月06日

聚题库
03/06
<p class="introTit">单选题</p><p>1、若tanα=3,则<img src="https://img2.meite.com/questions/202303/2864225cb9b9476.png" /></p><ul><li>A:-2</li><li>B:<img src='https://img2.meite.com/questions/202303/2864225cc0f208a.png' /></li><li>C:2</li><li>D:-4</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202303/2864225d63144f9.png" /></p><p>2、函数<img src="https://img2.meite.com/questions/202303/156411640a2cd90.png" />的定义域是()</p><ul><li>A:{x|-3<x<-1}</li><li>B:{x|x<-3或x>-1}</li><li>C:{x|1<x<3}</li><li>D:{x|x<1或x>3}</li></ul><p>答 案:D</p><p>解 析:由对数函数的性质可知<img src="https://img2.meite.com/questions/202303/15641167889eb44.png" />,解得x>3或x<1,因此函数的定义域为{x|x<1或x>3}</p><p>3、在△ABC中,若b=<img src="https://img2.meite.com/questions/202303/2864228792c7c59.png" />,c=<img src="https://img2.meite.com/questions/202303/286422879bef613.png" /><img src="https://img2.meite.com/questions/202303/28642287a3c143e.png" />则a等于()</p><ul><li>A:2</li><li>B:<img src='https://img2.meite.com/questions/202303/28642287b3e4835.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/28642287b8ca84c.png' /></li><li>D:无解</li></ul><p>答 案:B</p><p>解 析:此题是已知两边和其中一边的对角,解三角形时,会出现一解、两解、无解的情况,要注意这一点.用余弦定理<img src="https://img2.meite.com/questions/202303/286422888d98016.png" />可得<img src="https://img2.meite.com/questions/202303/28642288b870fd3.png" /><img src="https://img2.meite.com/questions/202303/28642288bcdcd26.png" /><img src="https://img2.meite.com/questions/202303/28642288cb0279a.png" /><img src="https://img2.meite.com/questions/202303/28642288d358a96.png" /><img src="https://img2.meite.com/questions/202303/28642288e0d440f.png" />解出<img src="https://img2.meite.com/questions/202303/28642288f8ec133.png" /><img src="https://img2.meite.com/questions/202303/286422890103ec2.png" /><img src="https://img2.meite.com/questions/202303/286422890874181.png" /><img src="https://img2.meite.com/questions/202303/2864228911473af.png" /></p><p>4、<img border="0" style="width: 58px; height: 37px;" src="https://img2.meite.com/zzpuce/2023-04/643679c8eed3a35616.jpeg">( )</p><ul><li>A:-2</li><li>B:<img border="0" style="width: 24px; height: 37px;" src="https://img2.meite.com/zzpuce/2023-04/643679c9008af39045.jpeg"></li><li>C:<img border="0" style="width: 14px; height: 37px;" src="https://img2.meite.com/zzpuce/2023-04/643679c90917e56279.jpeg"></li><li>D:2</li></ul><p>答 案:C</p><p class="introTit">主观题</p><p>1、在△ABC中,B=120°,BC=4,△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />,求AC.</p><p>答 案:由△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />得<img src="https://img2.meite.com/questions/202303/1564116bba3c98d.png" />所以AB =4.因此<img src="https://img2.meite.com/questions/202303/1564116be4bebd5.png" />所以<img src="https://img2.meite.com/questions/202303/1564116be967e8f.png" /></p><p>2、在正四棱柱ABCD-A'B'C'D'中,<img src="https://img2.meite.com/questions/202303/28642255fa50503.png" /> (Ⅰ)写出向量<img src="https://img2.meite.com/questions/202303/286422561b1d145.png" />关于基底{a,b,c}的分解式 (Ⅱ)求证:<img src="https://img2.meite.com/questions/202303/286422563d58cde.png" /> (Ⅲ)求证:<img src="https://img2.meite.com/questions/202303/28642256478aacd.png" />  </p><p>答 案:(Ⅰ)由题意知(如图所示) <img src="https://img2.meite.com/questions/202303/286422566983935.png" /> <img src="https://img2.meite.com/questions/202303/28642256740213a.png" /><img src="https://img2.meite.com/questions/202303/286422567c06c5d.png" /> (Ⅱ)<img src="https://img2.meite.com/questions/202303/2864225695c5fbd.png" /><img src="https://img2.meite.com/questions/202303/286422569cdc533.png" /> (Ⅲ)<img src="https://img2.meite.com/questions/202303/28642256a537b6d.png" /> 由已知,a,c是正四棱柱的棱,a,b,c两两垂直 <img src="https://img2.meite.com/questions/202303/28642256d1c4379.png" />  </p><p>3、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得<img src="https://img2.meite.com/questions/202303/2864228db8c0e49.png" />AB=120m,求河的宽 <img src="https://img2.meite.com/questions/202303/2864228dd64bdcb.png" /></p><p>答 案:如图, <img src="https://img2.meite.com/questions/202303/2864228df3f06d3.png" /> ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD=<img src="https://img2.meite.com/questions/202303/2864228e8a387f3.png" />=60m, 即河宽为60m  </p><p>4、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p class="introTit">填空题</p><p>1、lg(tan43°tan45°tan47°)=()  </p><p>答 案:0</p><p>解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0</p><p>2、不等式<img src="https://img2.meite.com/questions/202303/28642289d6ca884.png" />的解集为()  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/28642289e5c9bcc.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/28642289efc4ba4.png" /><img src="https://img2.meite.com/questions/202303/28642289fa37c87.png" /><img src="https://img2.meite.com/questions/202303/2864228a0077853.png" /></p>
相关题库