2024年成考高起点《数学(文史)》每日一练试题03月05日
<p class="introTit">单选题</p><p>1、函数<img src="https://img2.meite.com/questions/202303/14641025ba25660.png" />的定义域是()</p><ul><li>A:{x|-3≤x≤-1}</li><li>B:{x|x≤-3或x≥-1}</li><li>C:{x|1≤x≤3}</li><li>D:{x|x≤1或x≥3}</li></ul><p>答 案:D</p><p>解 析:由题可知x<sup>2</sup>-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.</p><p>2、下列函数为奇函数的是 ( )。</p><ul><li>A:<img border="0" style="width: 58px; height: 28px;" src="https://img2.meite.com/zzpuce/2023-04/643679c4979df72105.jpeg"></li><li>B:<img border="0" style="width: 87px; height: 28px;" src="https://img2.meite.com/zzpuce/2023-04/643679c4a2e3413730.jpeg"></li><li>C:<img border="0" style="width: 60px; height: 31px;" src="https://img2.meite.com/zzpuce/2023-04/643679c4a9e5831050.jpeg"></li><li>D:<img border="0" style="width: 60px; height: 25px;" src="https://img2.meite.com/zzpuce/2023-04/643679c4b014127406.jpeg"></li></ul><p>答 案:D</p><p>解 析:本题主要考查的知识点为函数的奇偶性. 【应试指导】f(z)=sinx=-sin(-x)=-f(-x),所以y=sinx为奇函数. </p><p>3、点(2,4)关于直线y=x的对称点的坐标为()
</p><ul><li>A:(4,2)</li><li>B:(-2,-4)</li><li>C:(-2,4)</li><li>D:(-4,-2)</li></ul><p>答 案:A</p><p>解 析:点(2,4) 关于直线y=x对称的点为(4,2)</p><p>4、任选一个两位数,它恰好是10的倍数的概率是()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/2964239a9b1203b.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/2964239a9f21f1c.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/2964239aa80509d.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/2964239aa374c5f.png' /></li></ul><p>答 案:C</p><p>解 析:由已知条件可知此题属于等可能事件.两位数(正整数)从10~99共有90个,则n=90,是10的倍数的两位数共有9个,则m=9,<img src="https://img2.meite.com/questions/202303/2964239b50cf34a.png" />故任选一个两位数(正整数),它恰好是10的倍数的概率是<img src="https://img2.meite.com/questions/202303/2964239b6932ff5.png" /></p><p class="introTit">主观题</p><p>1、已知直线l的斜率为1,l过抛物线C:<img src="https://img2.meite.com/questions/202303/1564111c54b8a1f.png" />的焦点,且与C交于A,B两点.<br />(I)求l与C的准线的交点坐标;<br />(II)求|AB|.</p><p>答 案:(I)C的焦点为<img src="https://img2.meite.com/questions/202303/1564111ce1ece45.png" />,准线为<img src="https://img2.meite.com/questions/202303/1564111cf077c15.png" />由题意得l的方程为<img src="https://img2.meite.com/questions/202303/1564111d17b9087.png" />因此l与C的准线的交点坐标为<img src="https://img2.meite.com/questions/202303/1564111d41e334d.png" />(II)由<img src="https://img2.meite.com/questions/202303/1564111d60deac4.png" />得<img src="https://img2.meite.com/questions/202303/1564111d70ccff6.png" />设A(x1,y1).B(x2,y2),则<img src="https://img2.meite.com/questions/202303/1564111da85efe1.png" />因此<img src="https://img2.meite.com/questions/202303/1564111db86701f.png" /></p><p>2、已知等差数列<img src="https://img2.meite.com/questions/202303/296423eaf9717d6.png" />前n项和<img src="https://img2.meite.com/questions/202303/296423eb032d219.png" />
(Ⅰ)求通项<img src="https://img2.meite.com/questions/202303/296423eb1a4ebf5.png" />的表达式
(Ⅱ)求<img src="https://img2.meite.com/questions/202303/296423eb26c2214.png" />的值
</p><p>答 案:(Ⅰ)当n=1时,由<img src="https://img2.meite.com/questions/202303/296423eb432a645.png" />得<img src="https://img2.meite.com/questions/202303/296423eb5068b03.png" /> <img src="https://img2.meite.com/questions/202303/296423eb59a45cd.png" />
<img src="https://img2.meite.com/questions/202303/296423eb6100c03.png" />
也满足上式,故<img src="https://img2.meite.com/questions/202303/296423eb755b7df.png" />=1-4n(n≥1)
(Ⅱ)由于数列<img src="https://img2.meite.com/questions/202303/296423eb93e2df0.png" />是首项为<img src="https://img2.meite.com/questions/202303/296423eba5a3367.png" />公差为d=-4的等差数列,所以<img src="https://img2.meite.com/questions/202303/296423ebc29c045.png" />是首项为<img src="https://img2.meite.com/questions/202303/296423ebe5ba947.png" />公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
<img src="https://img2.meite.com/questions/202303/296423ec1ac9811.png" /><img src="https://img2.meite.com/questions/202303/296423ec20a013e.png" />
</p><p>3、设函数<img src="https://img2.meite.com/questions/202303/1564111c65679ad.png" /><br />(I)求f'(2);<br />(II)求f(x)在区间[一1,2]的最大值与最小值.</p><p>答 案:(I)因为<img src="https://img2.meite.com/questions/202303/1564111dd4eb139.png" />,所以f'(2)=3×2<sup>2</sup>-4=8.(II)因为x<-1,f(-1)=3.<img src="https://img2.meite.com/questions/202303/1564111ea39de57.png" />f(2)=0.<br />所以f(x)在区间[一1,2]的最大值为3,最小值为<img src="https://img2.meite.com/questions/202303/1564111eb99e49a.png" /></p><p>4、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.
</p><p>答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x)
整理得y=<img src="https://img2.meite.com/questions/202303/286422a66eea349.png" />+30x+1800
配方得y=<img src="https://img2.meite.com/questions/202303/286422a688a5af1.png" />+1875
当x=5时,y有最大值,所以每亩地最多种25棵</p><p class="introTit">填空题</p><p>1、函数y=<img src="https://img2.meite.com/questions/202303/296423a650306d1.png" />的定义域是()</p><p>答 案:[1,+∞)</p><p>解 析:要是函数y=<img src="https://img2.meite.com/questions/202303/296423a6e097a67.png" />有意义,需使<img src="https://img2.meite.com/questions/202303/296423a6f397863.png" /><img src="https://img2.meite.com/questions/202303/296423a703abb7f.png" /> 所以函数的定义域为{x|x≥1}=[1,+∞)
</p><p>2、<img src="https://img2.meite.com/questions/202303/1464102a1d5eac7.png" />()</p><p>答 案:3</p><p>解 析:<img src="https://img2.meite.com/questions/202303/14641031bbc80a1.png" /></p>