2024年成考高起点《数学(文史)》每日一练试题03月02日
<p class="introTit">单选题</p><p>1、已知直线l:3x一2y-5=0,圆C:<img src="https://img2.meite.com/questions/202303/146410290217fd9.png" />,则C上到l的距离为1的点共有()</p><ul><li>A:1个</li><li>B:2个</li><li>C:3个</li><li>D:4个</li></ul><p>答 案:D</p><p>解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为<img src="https://img2.meite.com/questions/202303/1464102c5f67c9b.png" />,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.</p><p>2、设集合S={(x,y)|xy>0},T={(x,y)|x>0,且y>0},则</p><ul><li>A:S∪T=S</li><li>B:S∪T=T</li><li>C:S∩T=S</li><li>D:S∩T=∅</li></ul><p>答 案:A</p><p>解 析:由已知条件可知集合S表示的是第第一,三象限的点集,集合T表示的是第一象限内点的集合,所以<img src="https://img2.meite.com/questions/202303/2964239f36a457d.png" />所以有S∪T=S,S∩T=T,所以选择A。</p><p>3、函数f(x)=<img src="https://img2.meite.com/questions/202303/2964239ea542b2e.png" />的单调增区间是()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/2964239ebc3fa1e.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/2964239ec1364eb.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/2964239ec5da4ec.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/2964239eca429dd.png' /></li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202303/2964239f6c29fd7.png" />中的<img src="https://img2.meite.com/questions/202303/2964239f78240cc.png" /><img src="https://img2.meite.com/questions/202303/2964239f8391b8a.png" />的减区间就为f(x)的增区间,设u(x)=<img src="https://img2.meite.com/questions/202303/2964239fa51c8e3.png" />当x∈R时,u(x)>0,函数u(x)在<img src="https://img2.meite.com/questions/202303/2964239fd320fd2.png" />是减函数, <img src="https://img2.meite.com/questions/202303/2964239fdcba7f4.png" />上是增函数
故f(x)=<img src="https://img2.meite.com/questions/202303/2964239ff389b79.png" />的单调增区间为<img src="https://img2.meite.com/questions/202303/2964239ffd784d3.png" />
ps:关于复合函数的问题要逐步分清每一层次的函数的图像和性质,再结合起来考虑整体,有时也可画出部分函数的图像来帮助分析和理解.
</p><p>4、函数<img src="https://img2.meite.com/questions/202303/14641025ba25660.png" />的定义域是()</p><ul><li>A:{x|-3≤x≤-1}</li><li>B:{x|x≤-3或x≥-1}</li><li>C:{x|1≤x≤3}</li><li>D:{x|x≤1或x≥3}</li></ul><p>答 案:D</p><p>解 析:由题可知x<sup>2</sup>-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.</p><p class="introTit">主观题</p><p>1、已知等差数列<img src="https://img2.meite.com/questions/202303/296423eaf9717d6.png" />前n项和<img src="https://img2.meite.com/questions/202303/296423eb032d219.png" />
(Ⅰ)求通项<img src="https://img2.meite.com/questions/202303/296423eb1a4ebf5.png" />的表达式
(Ⅱ)求<img src="https://img2.meite.com/questions/202303/296423eb26c2214.png" />的值
</p><p>答 案:(Ⅰ)当n=1时,由<img src="https://img2.meite.com/questions/202303/296423eb432a645.png" />得<img src="https://img2.meite.com/questions/202303/296423eb5068b03.png" /> <img src="https://img2.meite.com/questions/202303/296423eb59a45cd.png" />
<img src="https://img2.meite.com/questions/202303/296423eb6100c03.png" />
也满足上式,故<img src="https://img2.meite.com/questions/202303/296423eb755b7df.png" />=1-4n(n≥1)
(Ⅱ)由于数列<img src="https://img2.meite.com/questions/202303/296423eb93e2df0.png" />是首项为<img src="https://img2.meite.com/questions/202303/296423eba5a3367.png" />公差为d=-4的等差数列,所以<img src="https://img2.meite.com/questions/202303/296423ebc29c045.png" />是首项为<img src="https://img2.meite.com/questions/202303/296423ebe5ba947.png" />公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
<img src="https://img2.meite.com/questions/202303/296423ec1ac9811.png" /><img src="https://img2.meite.com/questions/202303/296423ec20a013e.png" />
</p><p>2、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)
<img src="https://img2.meite.com/questions/202303/296423e7b58f8d3.png" />
</p><p>答 案:如图 <img src="https://img2.meite.com/questions/202303/296423e7cbcb7ab.png" />
<img src="https://img2.meite.com/questions/202303/296423e7dd72c9c.png" />
</p><p>3、已知三角形的一个内角是<img src="https://img2.meite.com/questions/202303/296423b4bf816f0.png" />,面积是<img src="https://img2.meite.com/questions/202303/296423b4cd02d83.png" />周长是20,求各边的长.
</p><p>答 案:设三角形三边分别为a,b,c,∠A=60°, <img src="https://img2.meite.com/questions/202303/296423b55f6ab61.png" />
</p><p>4、设函数<img src="https://img2.meite.com/questions/202303/1564111c65679ad.png" /><br />(I)求f'(2);<br />(II)求f(x)在区间[一1,2]的最大值与最小值.</p><p>答 案:(I)因为<img src="https://img2.meite.com/questions/202303/1564111dd4eb139.png" />,所以f'(2)=3×2<sup>2</sup>-4=8.(II)因为x<-1,f(-1)=3.<img src="https://img2.meite.com/questions/202303/1564111ea39de57.png" />f(2)=0.<br />所以f(x)在区间[一1,2]的最大值为3,最小值为<img src="https://img2.meite.com/questions/202303/1564111eb99e49a.png" /></p><p class="introTit">填空题</p><p>1、函数<img src="https://img2.meite.com/questions/202303/296423b01fb70b9.png" />的图像与坐轴的交点共有()个
</p><p>答 案:2</p><p>解 析:当x=0,<img src="https://img2.meite.com/questions/202303/296423b06fa2850.png" />故函数与y轴交于(0,-1)点;令y=0,则有<img src="https://img2.meite.com/questions/202303/296423b0803e06f.png" />故函数与工轴交于(1,0)点,因此函数<img src="https://img2.meite.com/questions/202303/296423b08e0e38c.png" />与坐标轴的交点共有2个</p><p>2、设<img src="https://img2.meite.com/questions/202303/2964239c3b4ac2f.png" />则<img src="https://img2.meite.com/questions/202303/2964239c42d80d7.png" /></p><p>答 案:-1</p><p>解 析:<img src="https://img2.meite.com/questions/202303/2964239ca8a1cc9.png" /> <img src="https://img2.meite.com/questions/202303/2964239cb367f80.png" />
<img src="https://img2.meite.com/questions/202303/2964239cc4f078f.png" />
</p>