2024年成考高起点《数学(理)》每日一练试题02月26日

聚题库
02/26
<p class="introTit">单选题</p><p>1、从椭圆与x轴额右交点看短轴两端点的视角为60°的椭圆的离心率()  </p><ul><li>A:<img src='https://img2.meite.com/questions/202303/28642287ed710eb.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/28642287f182bba.png' /></li><li>C:1</li><li>D:<img src='https://img2.meite.com/questions/202303/28642287f85287f.png' /></li></ul><p>答 案:A</p><p>解 析:求椭圆的离心率,先求出a,c.(如图) <img src="https://img2.meite.com/questions/202303/286422892bd4fb5.png" /><img src="https://img2.meite.com/questions/202303/286422893b50a35.png" />,由椭圆定义知<img src="https://img2.meite.com/questions/202303/2864228950523ff.png" /> <img src="https://img2.meite.com/questions/202303/286422895c76294.png" /></p><p>2、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则其中恰有1个红球的概率为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/15641165c5e79d0.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/15641165cb7ed67.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/15641165d0b1aa2.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/15641165d3de24c.png' /></li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202303/1564116ab1b1548.png" /></p><p>3、若tanα=3,则<img src="https://img2.meite.com/questions/202303/2864225cb9b9476.png" /></p><ul><li>A:-2</li><li>B:<img src='https://img2.meite.com/questions/202303/2864225cc0f208a.png' /></li><li>C:2</li><li>D:-4</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202303/2864225d63144f9.png" /></p><p>4、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/15641165746df3c.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/1564116579ce1fd.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/156411657f3914e.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/1564116582cc298.png' /></li></ul><p>答 案:B</p><p>解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b<sup>2</sup>=16,故双曲线方程为<img src="https://img2.meite.com/questions/202303/15641169fee41e2.png" /></p><p class="introTit">主观题</p><p>1、在正四棱柱ABCD-A'B'C'D'中,<img src="https://img2.meite.com/questions/202303/28642255fa50503.png" /> (Ⅰ)写出向量<img src="https://img2.meite.com/questions/202303/286422561b1d145.png" />关于基底{a,b,c}的分解式 (Ⅱ)求证:<img src="https://img2.meite.com/questions/202303/286422563d58cde.png" /> (Ⅲ)求证:<img src="https://img2.meite.com/questions/202303/28642256478aacd.png" />  </p><p>答 案:(Ⅰ)由题意知(如图所示) <img src="https://img2.meite.com/questions/202303/286422566983935.png" /> <img src="https://img2.meite.com/questions/202303/28642256740213a.png" /><img src="https://img2.meite.com/questions/202303/286422567c06c5d.png" /> (Ⅱ)<img src="https://img2.meite.com/questions/202303/2864225695c5fbd.png" /><img src="https://img2.meite.com/questions/202303/286422569cdc533.png" /> (Ⅲ)<img src="https://img2.meite.com/questions/202303/28642256a537b6d.png" /> 由已知,a,c是正四棱柱的棱,a,b,c两两垂直 <img src="https://img2.meite.com/questions/202303/28642256d1c4379.png" />  </p><p>2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p>3、已知直线l的斜率为1,l过抛物线C:<img src="https://img2.meite.com/questions/202303/156411660ae04fb.png" />的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;<br />(II)求|AB|.</p><p>答 案:(I)C的焦点为<img src="https://img2.meite.com/questions/202303/1564116c40cf40a.png" />,准线为<img src="https://img2.meite.com/questions/202303/1564116c45024f5.png" />由题意得l的方程为<img src="https://img2.meite.com/questions/202303/1564116c5cf0409.png" />因此l与C的准线的交点坐标为<img src="https://img2.meite.com/questions/202303/1564116c7901a26.png" />(II)由<img src="https://img2.meite.com/questions/202303/1564116c9294ce9.png" />,得<img src="https://img2.meite.com/questions/202303/1564116c9d411f3.png" />设A(x1,y1),B(x2,y2),则<img src="https://img2.meite.com/questions/202303/1564116cd0bfaf7.png" />因此<img src="https://img2.meite.com/questions/202303/1564116ce1375a9.png" /></p><p>4、在△ABC中,B=120°,BC=4,△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />,求AC.</p><p>答 案:由△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />得<img src="https://img2.meite.com/questions/202303/1564116bba3c98d.png" />所以AB =4.因此<img src="https://img2.meite.com/questions/202303/1564116be4bebd5.png" />所以<img src="https://img2.meite.com/questions/202303/1564116be967e8f.png" /></p><p class="introTit">填空题</p><p>1、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/286422989dd2b03.png" /></p><p>解 析:原直线方程可化为<img src="https://img2.meite.com/questions/202303/28642298bab2d76.png" />交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,<img src="https://img2.meite.com/questions/202303/28642298d6bc461.png" />当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,<img src="https://img2.meite.com/questions/202303/28642298ef2aa6b.png" /></p><p>2、函数<img src="https://img2.meite.com/questions/202303/2864225857f0d64.png" />的图像与坐标轴的交点共有()  </p><p>答 案:2</p><p>解 析:当x=0时,y=<img src="https://img2.meite.com/questions/202303/286422587f2a68b.png" />-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有<img src="https://img2.meite.com/questions/202303/28642258b372965.png" />故函数与x轴交于(1,0) 点,因此函数 <img src="https://img2.meite.com/questions/202303/28642258c6c51c8.png" />与坐标轴的交点共有 2个.</p>
相关题库