2024年成考高起点《数学(理)》每日一练试题02月22日

聚题库
02/22
<p class="introTit">单选题</p><p>1、在△ABC中,若b=<img src="https://img2.meite.com/questions/202303/2864228792c7c59.png" />,c=<img src="https://img2.meite.com/questions/202303/286422879bef613.png" /><img src="https://img2.meite.com/questions/202303/28642287a3c143e.png" />则a等于()</p><ul><li>A:2</li><li>B:<img src='https://img2.meite.com/questions/202303/28642287b3e4835.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/28642287b8ca84c.png' /></li><li>D:无解</li></ul><p>答 案:B</p><p>解 析:此题是已知两边和其中一边的对角,解三角形时,会出现一解、两解、无解的情况,要注意这一点.用余弦定理<img src="https://img2.meite.com/questions/202303/286422888d98016.png" />可得<img src="https://img2.meite.com/questions/202303/28642288b870fd3.png" /><img src="https://img2.meite.com/questions/202303/28642288bcdcd26.png" /><img src="https://img2.meite.com/questions/202303/28642288cb0279a.png" /><img src="https://img2.meite.com/questions/202303/28642288d358a96.png" /><img src="https://img2.meite.com/questions/202303/28642288e0d440f.png" />解出<img src="https://img2.meite.com/questions/202303/28642288f8ec133.png" /><img src="https://img2.meite.com/questions/202303/286422890103ec2.png" /><img src="https://img2.meite.com/questions/202303/286422890874181.png" /><img src="https://img2.meite.com/questions/202303/2864228911473af.png" /></p><p>2、已知偶函数y=f(x),在区间[a,b](0<a<b)上是增函数,那么它在区间[-b,-a]上是()  </p><ul><li>A:增函数</li><li>B:减函数</li><li>C:不是单调函数</li><li>D:常数</li></ul><p>答 案:B</p><p>解 析:由偶函数的性质:偶函数在[a,b]和[-b,-a]上有相反的单调性,可知,y=f(x)在区间[a,b](0<a<b)上是增函数,他在[-b,-a]是减函数,此题考查函数的性质,因为y=f(x)为偶函数,所以f(-a)=f(a),f(-b)=f(b),又因为f(a)<f(b),所以f(-a)<f(-b),即f(-b)>f(-a),所以f(x)在[-b,-a]上是减函数。</p><p>3、过点P(2,3)且在两轴上截距相等的直线方程为()  </p><ul><li>A:<img src='https://img2.meite.com/questions/202303/28642247fd1a957.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/2864224806409c5.png' /></li><li>C:x+y=5</li><li>D:<img src='https://img2.meite.com/questions/202303/286422481c778c0.png' /></li></ul><p>答 案:B</p><p>解 析:选项A中,<img src="https://img2.meite.com/questions/202303/28642248c79f1f7.png" />在x、y 轴上截距为 5.但答案不完整 所以选项B中有两个方程,<img src="https://img2.meite.com/questions/202303/28642248eb2ee0d.png" />在x轴上横截距与y轴上的纵截距都为0,也是相等的 选项C,虽然过点(2,3),实质上与选项A相同.选项 D,转化为:<img src="https://img2.meite.com/questions/202303/286422492c2692d.png" />答案不完整  </p><p>4、在<img src="https://img2.meite.com/questions/202303/2864229ccdc2c12.png" />的展开式中,<img src="https://img2.meite.com/questions/202303/2864229cd7bb0ed.png" />的系数是</p><ul><li>A:448</li><li>B:1140</li><li>C:-1140</li><li>D:-448</li></ul><p>答 案:D</p><p>解 析:直接套用二项式展开公式: <img src="https://img2.meite.com/questions/202303/2864229d00efc7c.png" /> 注:展开式中第r+1项的二项式系数<img src="https://img2.meite.com/questions/202303/2864229d147997f.png" />与第r+1项的系数不同,此题不能只写出<img src="https://img2.meite.com/questions/202303/2864229d2793fea.png" />就为<img src="https://img2.meite.com/questions/202303/2864229d2fd4a0c.png" />的系数  </p><p class="introTit">主观题</p><p>1、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p>2、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得<img src="https://img2.meite.com/questions/202303/2864228db8c0e49.png" />AB=120m,求河的宽 <img src="https://img2.meite.com/questions/202303/2864228dd64bdcb.png" /></p><p>答 案:如图, <img src="https://img2.meite.com/questions/202303/2864228df3f06d3.png" /> ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD=<img src="https://img2.meite.com/questions/202303/2864228e8a387f3.png" />=60m, 即河宽为60m  </p><p>3、已知直线l的斜率为1,l过抛物线C:<img src="https://img2.meite.com/questions/202303/156411660ae04fb.png" />的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;<br />(II)求|AB|.</p><p>答 案:(I)C的焦点为<img src="https://img2.meite.com/questions/202303/1564116c40cf40a.png" />,准线为<img src="https://img2.meite.com/questions/202303/1564116c45024f5.png" />由题意得l的方程为<img src="https://img2.meite.com/questions/202303/1564116c5cf0409.png" />因此l与C的准线的交点坐标为<img src="https://img2.meite.com/questions/202303/1564116c7901a26.png" />(II)由<img src="https://img2.meite.com/questions/202303/1564116c9294ce9.png" />,得<img src="https://img2.meite.com/questions/202303/1564116c9d411f3.png" />设A(x1,y1),B(x2,y2),则<img src="https://img2.meite.com/questions/202303/1564116cd0bfaf7.png" />因此<img src="https://img2.meite.com/questions/202303/1564116ce1375a9.png" /></p><p>4、在△ABC中,B=120°,BC=4,△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />,求AC.</p><p>答 案:由△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />得<img src="https://img2.meite.com/questions/202303/1564116bba3c98d.png" />所以AB =4.因此<img src="https://img2.meite.com/questions/202303/1564116be4bebd5.png" />所以<img src="https://img2.meite.com/questions/202303/1564116be967e8f.png" /></p><p class="introTit">填空题</p><p>1、函数<img src="https://img2.meite.com/questions/202303/2864225857f0d64.png" />的图像与坐标轴的交点共有()  </p><p>答 案:2</p><p>解 析:当x=0时,y=<img src="https://img2.meite.com/questions/202303/286422587f2a68b.png" />-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有<img src="https://img2.meite.com/questions/202303/28642258b372965.png" />故函数与x轴交于(1,0) 点,因此函数 <img src="https://img2.meite.com/questions/202303/28642258c6c51c8.png" />与坐标轴的交点共有 2个.</p><p>2、lg(tan43°tan45°tan47°)=()  </p><p>答 案:0</p><p>解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0</p>
相关题库