2024年成考高起点《数学(理)》每日一练试题02月18日

聚题库
02/18
<p class="introTit">单选题</p><p>1、函数<img src="https://img2.meite.com/questions/202303/156411640a2cd90.png" />的定义域是()</p><ul><li>A:{x|-3<x<-1}</li><li>B:{x|x<-3或x>-1}</li><li>C:{x|1<x<3}</li><li>D:{x|x<1或x>3}</li></ul><p>答 案:D</p><p>解 析:由对数函数的性质可知<img src="https://img2.meite.com/questions/202303/15641167889eb44.png" />,解得x>3或x<1,因此函数的定义域为{x|x<1或x>3}</p><p>2、在△ABC中,已知2B= A+C,<img src="https://img2.meite.com/questions/202303/2864224869b5896.png" />= ac,则B-A=()  </p><ul><li>A:0</li><li>B:<img src='https://img2.meite.com/questions/202303/286422487fede7b.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/286422488835324.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/286422488c2a04f.png' /></li></ul><p>答 案:A</p><p>解 析:在△ABC中,A+B+C=π,A+C=π-B,① 因为2B=A+C,② 由①②得2B=π-B,<img src="https://img2.meite.com/questions/202303/28642249c382987.png" /> <img src="https://img2.meite.com/questions/202303/28642249ca97aad.png" /><img src="https://img2.meite.com/questions/202303/28642249d5a95b9.png" /> <img src="https://img2.meite.com/questions/202303/28642249df58afe.png" /> 由③④得<img src="https://img2.meite.com/questions/202303/28642249f0592a4.png" />a=c。所以A=C,又<img src="https://img2.meite.com/questions/202303/2864224a1878921.png" />所以△ABC为等边三角形,则B-A=0  </p><p>3、5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法  </p><ul><li>A:<img src='https://img2.meite.com/questions/202303/28642253cbeb828.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/28642253cf87ee2.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/28642253d82d2a0.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/28642253d319585.png' /></li></ul><p>答 案:C</p><p>解 析:将院校看成元素,高中生看成位置,由重复排列的元素、位置的条件口诀: “元素可挑剩,位置不可缺”,重复排列的种数共有<img src="https://img2.meite.com/questions/202303/286422548fe3345.png" />种,即将元素的个数作为底数,位置的个数作为指数.即:元素(院校)的个数为 3,位置(高中生)的个数为5,共有<img src="https://img2.meite.com/questions/202303/28642254ad8b5e0.png" />种。  </p><p>4、已知直线l:3x-2y-5=0,圆C:<img src="https://img2.meite.com/questions/202303/15641165a44cf2b.png" />,则C上到l的距离为1的点共有()</p><ul><li>A:1个</li><li>B:2个</li><li>C:3个</li><li>D:4个</li></ul><p>答 案:D</p><p>解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为<img src="https://img2.meite.com/questions/202303/1564116a8b9b50c.png" />,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.</p><p class="introTit">主观题</p><p>1、已知数列<img src="https://img2.meite.com/questions/202303/286422511c19556.png" />的前n项和<img src="https://img2.meite.com/questions/202303/2864225128dc6e0.png" /> 求证:<img src="https://img2.meite.com/questions/202303/286422513318bbb.png" />是等差数列,并求公差和首项。  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/286422514f41b7b.png" /> <img src="https://img2.meite.com/questions/202303/28642251563e39b.png" />  </p><p>2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p>3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.</p><p>答 案:由已知得<img src="https://img2.meite.com/questions/202303/1564116c009cc19.png" />解得<img src="https://img2.meite.com/questions/202303/1564116c0e039c1.png" /></p><p>4、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得<img src="https://img2.meite.com/questions/202303/2864228db8c0e49.png" />AB=120m,求河的宽 <img src="https://img2.meite.com/questions/202303/2864228dd64bdcb.png" /></p><p>答 案:如图, <img src="https://img2.meite.com/questions/202303/2864228df3f06d3.png" /> ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD=<img src="https://img2.meite.com/questions/202303/2864228e8a387f3.png" />=60m, 即河宽为60m  </p><p class="introTit">填空题</p><p>1、lg(tan43°tan45°tan47°)=()  </p><p>答 案:0</p><p>解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0</p><p>2、不等式<img src="https://img2.meite.com/questions/202303/28642289d6ca884.png" />的解集为()  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/28642289e5c9bcc.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/28642289efc4ba4.png" /><img src="https://img2.meite.com/questions/202303/28642289fa37c87.png" /><img src="https://img2.meite.com/questions/202303/2864228a0077853.png" /></p>
相关题库