2024年成考高起点《数学(理)》每日一练试题02月11日
<p class="introTit">单选题</p><p>1、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若<img src="https://img2.meite.com/questions/202303/156411654c87f3a.png" />,则m=()</p><ul><li>A:-2</li><li>B:-1</li><li>C:0</li><li>D:1</li></ul><p>答 案:C</p><p>解 析:由题可知向量a=(2,3,m),故<img src="https://img2.meite.com/questions/202303/15641169a04e100.png" />,解得m=0.</p><p>2、5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法
</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/28642253cbeb828.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/28642253cf87ee2.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/28642253d82d2a0.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/28642253d319585.png' /></li></ul><p>答 案:C</p><p>解 析:将院校看成元素,高中生看成位置,由重复排列的元素、位置的条件口诀: “元素可挑剩,位置不可缺”,重复排列的种数共有<img src="https://img2.meite.com/questions/202303/286422548fe3345.png" />种,即将元素的个数作为底数,位置的个数作为指数.即:元素(院校)的个数为 3,位置(高中生)的个数为5,共有<img src="https://img2.meite.com/questions/202303/28642254ad8b5e0.png" />种。
</p><p>3、设集合M={x||x-2|<1},N={x|x>2},则M∩N=()</p><ul><li>A:{x|1<x<3}</li><li>B:{x|x>2}</li><li>C:{x|2<x<3}</li><li>D:{x|1<x<2}</li></ul><p>答 案:C</p><p>解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}</p><p>4、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/2864228b79d4590.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/2864228b7f2183c.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/2864228b82e5ed4.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/2864228b86922f8.png' /></li></ul><p>答 案:B</p><p>解 析:求cos<a,b>可直接用公式cos<a,b><img src="https://img2.meite.com/questions/202303/2864228c5310ae5.png" /> a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,<img src="https://img2.meite.com/questions/202303/2864228c9dda4eb.png" />
</p><p class="introTit">主观题</p><p>1、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.</p><p>答 案:由已知得<img src="https://img2.meite.com/questions/202303/1564116c009cc19.png" />解得<img src="https://img2.meite.com/questions/202303/1564116c0e039c1.png" /></p><p>2、在正四棱柱ABCD-A'B'C'D'中,<img src="https://img2.meite.com/questions/202303/2864229a3bc3098.png" />
(Ⅰ)写出向量<img src="https://img2.meite.com/questions/202303/2864229a57ba174.png" />和<img src="https://img2.meite.com/questions/202303/2864229a5e46ac8.png" />关于基底{a,b,c}的分解式;
(Ⅱ)求证:<img src="https://img2.meite.com/questions/202303/2864229a76ba56d.png" />
(Ⅲ)求证:<img src="https://img2.meite.com/questions/202303/2864229a7fdd541.png" />
</p><p>答 案:(Ⅰ)由题意知(如图所示) <img src="https://img2.meite.com/questions/202303/2864229af6b1567.png" />
<img src="https://img2.meite.com/questions/202303/2864229afe90f50.png" />
<img src="https://img2.meite.com/questions/202303/2864229b08314c5.png" />
</p><p>3、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得<img src="https://img2.meite.com/questions/202303/2864228db8c0e49.png" />AB=120m,求河的宽
<img src="https://img2.meite.com/questions/202303/2864228dd64bdcb.png" /></p><p>答 案:如图, <img src="https://img2.meite.com/questions/202303/2864228df3f06d3.png" />
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=<img src="https://img2.meite.com/questions/202303/2864228e8a387f3.png" />=60m,
即河宽为60m
</p><p>4、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p class="introTit">填空题</p><p>1、函数<img src="https://img2.meite.com/questions/202303/28642285dd68e2c.png" />的定义域是()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/28642285f367786.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/28642285fcec513.png" /><img src="https://img2.meite.com/questions/202303/2864228601aa2da.png" />所以函数<img src="https://img2.meite.com/questions/202303/286422860d8135c.png" />的定义域是<img src="https://img2.meite.com/questions/202303/286422861644b62.png" /></p><p>2、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/286422508f0554f.png" /></p><p>解 析:由于a//b,故<img src="https://img2.meite.com/questions/202303/286422509cd5c14.png" /></p>