2024年成考高起点《数学(理)》每日一练试题01月29日

聚题库
01/29
<p class="introTit">单选题</p><p>1、过点(-2,2)与直线x+3y-5=0平行的直线是()</p><ul><li>A:x+3y-4=0</li><li>B:3x+y+4=0</li><li>C:x+3y+8=0</li><li>D:3x-y+8=0</li></ul><p>答 案:A</p><p>解 析:所求直线与x+3y-5=0平行,可设所求直线为x+3y+c=0,将点(一2,2)带入直线方程,故-2+3×2+c=0,解得c=-4,因此所求直线为线为x+3y-4=0.</p><p>2、从椭圆与x轴额右交点看短轴两端点的视角为60°的椭圆的离心率()  </p><ul><li>A:<img src='https://img2.meite.com/questions/202303/28642287ed710eb.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/28642287f182bba.png' /></li><li>C:1</li><li>D:<img src='https://img2.meite.com/questions/202303/28642287f85287f.png' /></li></ul><p>答 案:A</p><p>解 析:求椭圆的离心率,先求出a,c.(如图) <img src="https://img2.meite.com/questions/202303/286422892bd4fb5.png" /><img src="https://img2.meite.com/questions/202303/286422893b50a35.png" />,由椭圆定义知<img src="https://img2.meite.com/questions/202303/2864228950523ff.png" /> <img src="https://img2.meite.com/questions/202303/286422895c76294.png" /></p><p>3、设双曲线<img src="https://img2.meite.com/questions/202303/2864229bffc903a.png" />的渐近线的斜率为k,则|k|=()  </p><ul><li>A:<img src='https://img2.meite.com/questions/202303/2864229c1452370.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/2864229c18b1b1c.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/2864229c22758e7.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/2864229c1da4817.png' /></li></ul><p>答 案:D</p><p>解 析:双曲线渐近线的斜率为k<img src="https://img2.meite.com/questions/202303/2864229c7d57118.png" />故本题中k<img src="https://img2.meite.com/questions/202303/2864229c8e41a4f.png" /></p><p>4、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若<img src="https://img2.meite.com/questions/202303/156411654c87f3a.png" />,则m=()</p><ul><li>A:-2</li><li>B:-1</li><li>C:0</li><li>D:1</li></ul><p>答 案:C</p><p>解 析:由题可知向量a=(2,3,m),故<img src="https://img2.meite.com/questions/202303/15641169a04e100.png" />,解得m=0.</p><p class="introTit">主观题</p><p>1、已知等差数列前n项和<img src="https://img2.meite.com/questions/202303/2864228a3204a03.png" /> (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和</p><p>答 案:<img src="https://img2.meite.com/questions/202303/2864228a568855e.png" /> <img src="https://img2.meite.com/questions/202303/2864228a63bc5a4.png" />  </p><p>2、设函数f(x)=<img src="https://img2.meite.com/questions/202303/28642286431b211.png" /> (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值</p><p>答 案:(Ⅰ)函数的定义域为<img src="https://img2.meite.com/questions/202303/28642286bee9cc3.png" /> <img src="https://img2.meite.com/questions/202303/28642286c7d68a9.png" /> (Ⅱ)<img src="https://img2.meite.com/questions/202303/28642286d3444c8.png" />  </p><p>3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p>4、某工厂每月生产x台游戏机的收入为R(x)=<img src="https://img2.meite.com/questions/202303/28642259676bd4d.png" />+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  </p><p>答 案:利润 =收入-成本, L(x)=R(x)-C(x)=<img src="https://img2.meite.com/questions/202303/28642259c06a284.png" />+130x-206-(50x+100)=<img src="https://img2.meite.com/questions/202303/28642259e2077b7.png" />+80x-306 法一:用二次函数<img src="https://img2.meite.com/questions/202303/28642259fb36916.png" />当a<0时有最大值 <img src="https://img2.meite.com/questions/202303/2864225a14ed5aa.png" />是开口向下的抛物线,有最大值 <img src="https://img2.meite.com/questions/202303/2864225a2c75330.png" /> 法二:用导数来求解 <img src="https://img2.meite.com/questions/202303/2864225a43988b8.png" /> 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294  </p><p class="introTit">填空题</p><p>1、函数<img src="https://img2.meite.com/questions/202303/2864225857f0d64.png" />的图像与坐标轴的交点共有()  </p><p>答 案:2</p><p>解 析:当x=0时,y=<img src="https://img2.meite.com/questions/202303/286422587f2a68b.png" />-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有<img src="https://img2.meite.com/questions/202303/28642258b372965.png" />故函数与x轴交于(1,0) 点,因此函数 <img src="https://img2.meite.com/questions/202303/28642258c6c51c8.png" />与坐标轴的交点共有 2个.</p><p>2、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()</p><p>答 案:7</p><p>解 析:由题可知长方体的底面的对角线长为<img src="https://img2.meite.com/questions/202303/1564116b1132166.png" />,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为<img src="https://img2.meite.com/questions/202303/1564116b3811959.png" /></p>
相关题库