2024年成考高起点《数学(理)》每日一练试题01月27日
<p class="introTit">单选题</p><p>1、已知全集U=R,A={x|x≥1},B={x|-1<x≤2},则<img src="https://img2.meite.com/questions/202303/2864229bae18781.png" /></p><ul><li>A:{x|x≤2}</li><li>B:{x|x<2}</li><li>C:{x|-1<x≤2}</li><li>D:{x|-1<x<1}</li></ul><p>答 案:A</p><p>解 析:补集运算应明确知道是否包括端点.A在U中的补集是x<1, <img src="https://img2.meite.com/questions/202303/2864229c436e804.png" />
<img src="https://img2.meite.com/questions/202303/2864229c50ac610.png" /><img src="https://img2.meite.com/questions/202303/2864229c574ae01.png" /><img src="https://img2.meite.com/questions/202303/2864229c5e8c7e7.png" />
</p><p>2、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/2864228b79d4590.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/2864228b7f2183c.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/2864228b82e5ed4.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/2864228b86922f8.png' /></li></ul><p>答 案:B</p><p>解 析:求cos<a,b>可直接用公式cos<a,b><img src="https://img2.meite.com/questions/202303/2864228c5310ae5.png" /> a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,<img src="https://img2.meite.com/questions/202303/2864228c9dda4eb.png" />
</p><p>3、将一颗骰子抛掷1次,到的点数为偶数的概率为
</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/28642253b027cee.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/28642253b3b5865.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/28642253beb605d.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/28642253b9ec882.png' /></li></ul><p>答 案:D</p><p>解 析:一颗骰子的点数分别为1,2,3,4,5,6,其中偶数与奇数各占一半,故抛掷1次,得到的点数为偶数的概率为<img src="https://img2.meite.com/questions/202303/286422545e57429.png" /></p><p>4、<img border="0" style="width: 58px; height: 37px;" src="https://img2.meite.com/zzpuce/2023-04/643679c8eed3a35616.jpeg">( )</p><ul><li>A:-2</li><li>B:<img border="0" style="width: 24px; height: 37px;" src="https://img2.meite.com/zzpuce/2023-04/643679c9008af39045.jpeg"></li><li>C:<img border="0" style="width: 14px; height: 37px;" src="https://img2.meite.com/zzpuce/2023-04/643679c90917e56279.jpeg"></li><li>D:2</li></ul><p>答 案:C</p><p class="introTit">主观题</p><p>1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得<img src="https://img2.meite.com/questions/202303/2864228db8c0e49.png" />AB=120m,求河的宽
<img src="https://img2.meite.com/questions/202303/2864228dd64bdcb.png" /></p><p>答 案:如图, <img src="https://img2.meite.com/questions/202303/2864228df3f06d3.png" />
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=<img src="https://img2.meite.com/questions/202303/2864228e8a387f3.png" />=60m,
即河宽为60m
</p><p>2、已知数列<img src="https://img2.meite.com/questions/202303/286422511c19556.png" />的前n项和<img src="https://img2.meite.com/questions/202303/2864225128dc6e0.png" />
求证:<img src="https://img2.meite.com/questions/202303/286422513318bbb.png" />是等差数列,并求公差和首项。
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/286422514f41b7b.png" /> <img src="https://img2.meite.com/questions/202303/28642251563e39b.png" />
</p><p>3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p>4、在△ABC中,B=120°,BC=4,△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />,求AC.</p><p>答 案:由△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />得<img src="https://img2.meite.com/questions/202303/1564116bba3c98d.png" />所以AB =4.因此<img src="https://img2.meite.com/questions/202303/1564116be4bebd5.png" />所以<img src="https://img2.meite.com/questions/202303/1564116be967e8f.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202303/2864228ce0438da.png" />的展开式是()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/2864228d0c480eb.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/2864228d4197eb2.png" /><img src="https://img2.meite.com/questions/202303/2864228d47da120.png" /><img src="https://img2.meite.com/questions/202303/2864228d5101aa0.png" /><img src="https://img2.meite.com/questions/202303/2864228d5bc2a57.png" /><img src="https://img2.meite.com/questions/202303/2864228d65510b6.png" /></p><p>2、lg(tan43°tan45°tan47°)=()
</p><p>答 案:0</p><p>解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0</p>