2024年成考高起点《数学(理)》每日一练试题01月21日

聚题库
01/21
<p class="introTit">单选题</p><p>1、过点P(2,3)且在两轴上截距相等的直线方程为()  </p><ul><li>A:<img src='https://img2.meite.com/questions/202303/28642247fd1a957.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/2864224806409c5.png' /></li><li>C:x+y=5</li><li>D:<img src='https://img2.meite.com/questions/202303/286422481c778c0.png' /></li></ul><p>答 案:B</p><p>解 析:选项A中,<img src="https://img2.meite.com/questions/202303/28642248c79f1f7.png" />在x、y 轴上截距为 5.但答案不完整 所以选项B中有两个方程,<img src="https://img2.meite.com/questions/202303/28642248eb2ee0d.png" />在x轴上横截距与y轴上的纵截距都为0,也是相等的 选项C,虽然过点(2,3),实质上与选项A相同.选项 D,转化为:<img src="https://img2.meite.com/questions/202303/286422492c2692d.png" />答案不完整  </p><p>2、已知直线l:3x-2y-5=0,圆C:<img src="https://img2.meite.com/questions/202303/15641165a44cf2b.png" />,则C上到l的距离为1的点共有()</p><ul><li>A:1个</li><li>B:2个</li><li>C:3个</li><li>D:4个</li></ul><p>答 案:D</p><p>解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为<img src="https://img2.meite.com/questions/202303/1564116a8b9b50c.png" />,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.</p><p>3、设甲:<img src="https://img2.meite.com/questions/202303/15641165369dc0c.png" />;乙:<img src="https://img2.meite.com/questions/202303/156411653e04dd6.png" />.则()</p><ul><li>A:甲是乙的必要条件但不是充分条件</li><li>B:甲是乙的充分条件但不是必要条件</li><li>C:甲是乙的充要条件</li><li>D:甲既不是乙的充分条件也不是乙的必要条件</li></ul><p>答 案:A</p><p>解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.</p><p>4、参数方程<img src="https://img2.meite.com/questions/202303/28642284a62b73b.png" />(<img src="https://img2.meite.com/questions/202303/28642284ac644c3.png" />为参数)表示的图形为()</p><ul><li>A:直线</li><li>B:圆</li><li>C:椭圆</li><li>D:双曲线</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202303/286422859adf006.png" /><img src="https://img2.meite.com/questions/202303/286422859fe4502.png" />即半径为1的圆,圆心在原点</p><p class="introTit">主观题</p><p>1、已知数列<img src="https://img2.meite.com/questions/202303/286422511c19556.png" />的前n项和<img src="https://img2.meite.com/questions/202303/2864225128dc6e0.png" /> 求证:<img src="https://img2.meite.com/questions/202303/286422513318bbb.png" />是等差数列,并求公差和首项。  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/286422514f41b7b.png" /> <img src="https://img2.meite.com/questions/202303/28642251563e39b.png" />  </p><p>2、在正四棱柱ABCD-A'B'C'D'中,<img src="https://img2.meite.com/questions/202303/28642255fa50503.png" /> (Ⅰ)写出向量<img src="https://img2.meite.com/questions/202303/286422561b1d145.png" />关于基底{a,b,c}的分解式 (Ⅱ)求证:<img src="https://img2.meite.com/questions/202303/286422563d58cde.png" /> (Ⅲ)求证:<img src="https://img2.meite.com/questions/202303/28642256478aacd.png" />  </p><p>答 案:(Ⅰ)由题意知(如图所示) <img src="https://img2.meite.com/questions/202303/286422566983935.png" /> <img src="https://img2.meite.com/questions/202303/28642256740213a.png" /><img src="https://img2.meite.com/questions/202303/286422567c06c5d.png" /> (Ⅱ)<img src="https://img2.meite.com/questions/202303/2864225695c5fbd.png" /><img src="https://img2.meite.com/questions/202303/286422569cdc533.png" /> (Ⅲ)<img src="https://img2.meite.com/questions/202303/28642256a537b6d.png" /> 由已知,a,c是正四棱柱的棱,a,b,c两两垂直 <img src="https://img2.meite.com/questions/202303/28642256d1c4379.png" />  </p><p>3、已知等差数列前n项和<img src="https://img2.meite.com/questions/202303/2864228a3204a03.png" /> (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和</p><p>答 案:<img src="https://img2.meite.com/questions/202303/2864228a568855e.png" /> <img src="https://img2.meite.com/questions/202303/2864228a63bc5a4.png" />  </p><p>4、在△ABC中,B=120°,BC=4,△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />,求AC.</p><p>答 案:由△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />得<img src="https://img2.meite.com/questions/202303/1564116bba3c98d.png" />所以AB =4.因此<img src="https://img2.meite.com/questions/202303/1564116be4bebd5.png" />所以<img src="https://img2.meite.com/questions/202303/1564116be967e8f.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202303/2864228ce0438da.png" />的展开式是()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/2864228d0c480eb.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/2864228d4197eb2.png" /><img src="https://img2.meite.com/questions/202303/2864228d47da120.png" /><img src="https://img2.meite.com/questions/202303/2864228d5101aa0.png" /><img src="https://img2.meite.com/questions/202303/2864228d5bc2a57.png" /><img src="https://img2.meite.com/questions/202303/2864228d65510b6.png" /></p><p>2、lg(tan43°tan45°tan47°)=()  </p><p>答 案:0</p><p>解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0</p>
相关题库